3. 函数在 \infty 的留数
(1) 定义: 设 \infty 为 f 的孤立奇点, 则称 \bex \cfrac{1}{2\pi i}\int_{\vGa^-}f(z)\rd z\quad (\vGa:\ |z|=\rho) \eex 为 f 在 \infty 的留数, 记作 \dps{\underset{z=\infty}{\Res}f(z)} .
(2) 若 f 在 r<|z|<\infty 内有 Laurent 展式 \bex f(z)=\cdots+\cfrac{c_{-n}}{z^n}+\cdots+\cfrac{c_{-1}}{z}+c_0+c_1z+\cdots +c_nz^n+\cdots, \eex 则 \dps{\underset{z=\infty}{\Res}f(z)=-c_{-1}} .
(3) 计算
a. 用 Cauchy 留数定理: \bex \underset{z=\infty}{\Res}f(z) =-\sum_{k=1}^n \underset{z=a_k}{\Res}f(z). \eex
b. 转换为在零点的留数: \beex \bea \underset{z=\infty}{\Res}f(z) &=\cfrac{1}{2\pi i}\int_{\vGa^-}f(z)\rd z\\ &=\cfrac{1}{2\pi i}\int_{\sev{\zeta}=\cfrac{1}{\rho}} f\sex{\cfrac{1}{\zeta}}\sex{-\cfrac{1}{\zeta^2}}\rd \zeta\quad \sex{\zeta=\cfrac{1}{z}: z=\rho e^{i\tt}\ra \zeta=\cfrac{1}{\rho} e^{-i\tt}}\\ &=\cfrac{1}{2\pi i}\int_{|\zeta|=\cfrac{1}{\rho}} f\sex{\cfrac{1}{\zeta}}\sex{-\cfrac{1}{\zeta^2}}\rd \zeta\\ &=\underset{\zeta=0}{\Res}\sez{f\sex{\cfrac{1}{\zeta}}\sex{-\cfrac{1}{\zeta^2}}}. \eea \eeex
(4) 例: 求 \dps{I=\int_{|z|=4}\cfrac{z^{15}}{(z^2+1)^2(z^4+2)^3}\rd z} .
6. 2 用留数计算实积分
1. \dps{I=\int_0^{2\pi}R(\cos \tt,\sin\tt)\rd \tt} 型 (R : 有理函数).
(1) 数分: 用万能代换 \tan \cfrac{\tt}{2}=x\ra \sin\tt=\cfrac{2x}{1+x^2}, \cos\tt=\cfrac{1-x^2}{1+x^2},\ \rd \tt=\cdots .
(2) 复变: z=e^{i\tt}\ra \cos\tt=\cfrac{z+z^{-1}}{2},\ \sin\tt=\cfrac{z-z^{-1}}{2i},\ \rd \tt=\cfrac{\rd z}{iz} , 而 \bex I=\int_{|z|=1}R\sex{\cfrac{z+z^{-1}}{2},\cfrac{z-z^{-1}}{2i}}\cfrac{\rd z}{iz}. \eex
(3) 例: 求 \dps{I=\int_0^{2\pi}\cfrac{\rd \tt}{1-2p\cos\tt+p^2}} , (p\neq 0 , p\neq \pm 1 ).
作业: P 262-263 T 1 (1) (3) , T 4 (1) .
[复变函数]第22堂课 6.2 用留数定理计算实积分,布布扣,bubuko.com
原文地址:http://www.cnblogs.com/zhangzujin/p/3709502.html