标签:
皮尔森相关系数也叫皮尔森积差相关系数,用来反映两个变量之间相似程度的统计量。或者说用来表示两个向量的相似度。
皮尔森相关系数计算公式如下:
分子是协方差,分母两个向量的标准差的乘积。显然是要求两个向量的标准差不为零。
当两个向量的线性关系增强时,相关系数趋于1(正相关)或者-1(负相关)。当两个变量独立时,相关系数为0。反之,不成立。比如对于,X服从[-1,1]上的均匀分布,此时E(XY)为0,E(X)也为0,所以 ,但x和y明显不独立。所以“不相关”和“独立”是两回事。当Y 和X服从联合正态分布时,其相互独立和不相关是等价的。
对于居中(每个数据都剪去样本均值,居中后他们的平均值就为0)的数据来说,E(X)=E(Y)=0,此时有:
即相关系数可以看作是两个随机变量的向量的夹角的cos函数。
进一步归一化X和Y向量后,||X||=||Y||=1.相关系数即为两个向量的乘积
2、Spearman秩相关系数
使用Pearson线性相关系数有两个局限:
(1)必须假设两个向量必须服从正态分布
(2)取值是等距的
对于更一般的情况有其他的一些解决方案,Spearman秩相关系数就是其中之一。Spearman秩相关系数是一种无参数(与分布无关)的检验方法,用于度量变量之间联系的强弱。在没有重复数据的情况下,如果一个变量是另一个变量的严格单调函数,则Spearman秩相关系数就是+1或者-1,称变量完全Spearman秩相关。注意这和Pearson完全相关的区别:Pearson完全相关是只有当两个变量线性关系时,Pearson相关系数为+1或者-1。
对原始数据xi,yi按从大到小排序,记x‘i,y‘i为原始xi,yi在排序后列表中的位置,x‘i,y‘i称为xi,yi的秩次,秩次差di=x‘i-y‘i。Spearman秩相关系数为:
标签:
原文地址:http://www.cnblogs.com/ljy2013/p/5105609.html