标签:
Given the value of N, you will have to ?nd the value of G. The de?nition of G is given below:
G =
i<N
∑
i=1
j
∑
≤N
j=i+1
GCD(i, j)
Here GCD(i, j) means the greatest common divisor of integer i and integer j.
For those who have trouble understanding summation notation, the meaning of G is given in the
following code:
G=0;
for(i=1;i<N;i++)
for(j=i+1;j<=N;j++)
{
G+=gcd(i,j);
}
/*Here gcd() is a function that finds
the greatest common divisor of the two
input numbers*/
Input
The input ?le contains at most 100 lines of inputs. Each line contains an integer N (1 < N < 4000001).
The meaning of N is given in the problem statement. Input is terminated by a line containing a single
zero.
Output
For each line of input produce one line of output. This line contains the value of G for the corresponding
N. The value of G will ?t in a 64-bit signed integer.
Sample Input
10
100
200000
0
Sample Output
67
13015
143295493160
题意:给出n,求∑(i!=j) gcd(i,j) (1<=i,j<=n)
题解:s(n)=s(n-1)+gcd(1,n)+gcd(2,n)+……+gcd(n-1,n);
设f(n)=gcd(1,n)+gcd(2,n)+……+gcd(n-1,n)。
gcd(x,n)=i是n的约数(x<n),按照这个约数进行分类。设满足gcd(x,n)=i的约束有g(n,i)个,则有f(n)=sum(i*g(n,i))。
而gcd(x,n)=i等价于gcd(x/i,n/i)=1,因此g(n,i)等价于phi(n/i).phi(x)为欧拉函数。
#include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <algorithm> using namespace std ; typedef long long ll; const int N=4000000+10; ll phi[N+5] , f[N+5]; void phi_table() { for(int i = 2;i <= N; i++) phi[i] = 0; phi[1] = 1; for(int i = 2; i <= N; i++) { if(!phi[i]) { for(int j = i; j <= N; j += i) { if(!phi[j]) phi[j] = j; phi[j] = phi[j] / i * (i-1); } } } } ll s[N+5],n; int main() { phi_table(); for(int i = 1; i <= N; i++) { for(int j = i + i; j <= N; j += i) { f[j] += i * phi[j / i]; } } for(int i = 1; i <= N; i++) s[i] = s[i-1] + f[i]; while(~scanf("%lld",&n)) { if(!n) break; printf("%lld\n", s[n]); } return 0; }
UVA 11426 - GCD - Extreme (II) 欧拉函数-数学
标签:
原文地址:http://www.cnblogs.com/zxhl/p/5107989.html