码迷,mamicode.com
首页 > 其他好文 > 详细

决策树系列(四)——C4.5

时间:2016-01-12 22:54:32      阅读:342      评论:0      收藏:0      [点我收藏+]

标签:

预备知识:决策树ID3

      如上一篇文章所述,ID3方法主要有几个缺点:一是采用信息增益进行数据分裂,准确性不如信息增益率;二是不能对连续数据进行处理,只能通过连续数据离散化进行处理;三是没有采用剪枝的策略,决策树的结构可能会过于复杂,可能会出现过拟合的情况。

      C4.5在ID3的基础上对上述三个方面进行了相应的改进:

      a)  C4.5对节点进行分裂时采用信息增益率作为分裂的依据;

      b)  能够对连续数据进行处理;

      c)  C4.5采用剪枝的策略,对完全生长的决策树进行剪枝处理,一定程度上降低过拟合的影响。

1.采用信息增益率作为分裂的依据

     信息增益率的计算公式为:

技术分享

      其中技术分享表示信息增益,技术分享表示分裂子节点数据量的信息增益,计算公式为:

技术分享

      其中m表示节点的数量,Ni表示第i个节点的数据量,N表示父亲节点的数据量,说白了,技术分享其实是分裂节点的熵。

信息增益率越大,说明分裂的效果越好。

      以一个实际的例子说明C4.5如何通过信息增益率选择分裂的属性:

                                表1 原始数据表

当天天气

温度

湿度

日期

逛街

25

50

工作日

21

48

工作日

18

70

周末

28

41

周末

8

65

工作日

18

43

工作日

24

56

周末

18

76

周末

31

61

周末

6

43

周末

15

55

工作日

4

58

工作日

     以当天天气为例:

     一共有三个属性值,晴、阴、雨,一共分裂成三个子节点。

 技术分享

 

  根据上述公式,可以计算信息增益率如下:

技术分享

     

 

 

 

 

 

 

 

所以使用天气属性进行分裂可以得到信息增益率0.44。

2.对连续型属性进行处理

      C4.5处理离散型属性的方式与ID3一致,新增对连续型属性的处理。处理方式是先根据连续型属性进行排序,然后采用一刀切的方式将数据砍成两半。

那么如何选择切割点呢?很简单,直接计算每一个切割点切割后的信息增益,然后选择使分裂效果最优的切割点。以温度为例:

 技术分享

      从上图可以看出,理论上来讲,N条数据就有N-1个切割点,为了选取最优的切割垫,要计算按每一次切割的信息增益,计算量是比较大的,那么有没有简化的方法呢?有,注意到,其实有些切割点是很明显可以排除的。比如说上图右侧的第2条和第3条记录,两者的类标签(逛街)都是“是”,如果从这里切割的话,就将两个本来相同的类分开了,肯定不会比将他们归为一类的切分方法好,因此,可以通过去除前后两个类标签相同的切割点以简化计算的复杂度,如下图所示:

 技术分享

      从图中可以看出,最终切割点的数目从原来的11个减少到现在的6个,降低了计算的复杂度。

      确定了分割点之后,接下来就是选择最优的分割点了,注意,对连续型属性是采用信息增益进行内部择优的,因为如果使用信息增益率进行分裂会出现倾向于选择分割前后两个节点数据量相差最大的分割点,为了避免这种情况,选择信息增益选择分割点。选择了最优的分割点之后,再计算信息增益率跟其他的属性进行比较,确定最优的分裂属性。

3. 剪枝

      决策树只已经提到,剪枝是在完全生长的决策树的基础上,对生长后分类效果不佳的子树进行修剪,减小决策树的复杂度,降低过拟合的影响。

      C4.5采用悲观剪枝方法(PEP)。悲观剪枝认为如果决策树的精度在剪枝前后没有影响的话,则进行剪枝。怎样才算是没有影响?如果剪枝后的误差小于剪枝前经度的上限,则说明剪枝后的效果与更佳,此时需要子树进行剪枝操作。

进行剪枝必须满足的条件:

技术分享

其中:

 技术分享表示子树的误差;

技术分享 表示叶子节点的误差;

       令子树误差的经度满足二项分布,根据二项分布的性质,技术分享技术分享,其中技术分享,N为子树的数据量;同样,叶子节点的误差技术分享

      上述公式中,0.5表示修正因子。由于对父节点进行分裂总会得到比父节点分类结果更好的效果,因此,因此从理论上来说,父节点的误差总是不小于孩子节点的误差,因此需要进行修正,给每一个节点都加上0.5的修正因此,在计算误差的时候,子节点由于加上了修正的因子,就无法保证总误差总是低于父节点。

算例:

技术分享 

技术分享

 

 

 

 

 

 

由于技术分享,所以应该进行剪枝。

程序设计及源代码(C#版)

程序的设计过程

(1)数据格式

         对原始的数据进行数字化处理,并以二维数据的形式存储,每一行表示一条记录,前n-1列表示属性,最后一列表示分类的标签。

         如表1的数据可以转化为表2:

                                                                               表2 初始化后的数据

当天天气

温度

湿度

季节

明天天气

1

25

50

1

1

2

21

48

1

2

2

18

70

1

3

1

28

41

2

1

3

8

65

3

2

1

18

43

2

1

2

24

56

4

1

3

18

76

4

2

3

31

61

2

1

2

6

43

3

3

1

15

55

4

2

3

4

58

3

3

         其中,对于“当天天气”属性,数字{1,2,3}分别表示{晴,阴,雨};对于“季节”属性{1,2,3,4}分别表示{春天、夏天、冬天、秋天};对于类标签“明天天气”,数字{1,2,3}分别表示{晴、阴、雨}。

代码如下所示:

         static double[][] allData;                              //存储进行训练的数据

    static List<String>[] featureValues;                    //离散属性对应的离散值

featureValues是链表数组,数组的长度为属性的个数,数组的每个元素为该属性的离散值链表。

(2)两个类:节点类和分裂信息

a)节点类Node

该类表示一个节点,属性包括节点选择的分裂属性、节点的输出类、孩子节点、深度等。注意,与ID3中相比,新增了两个属性:leafWrong和leafNode_Count分别表示叶子节点的总分类误差和叶子节点的个数,主要是为了方便剪枝。

技术分享
 1 class Node
 2  {
 3         /// <summary>
 4         /// 各个子节点对应的取值
 5         /// </summary>
 6         //public List<String> features;
 7         public List<String> features{get;set;}
 8         /// <summary>
 9         /// 分裂属性的数据类型(1:连续 0:离散)
10         /// </summary>
11         public String feature_Type {get;set;}
12         /// <summary>
13         /// 分裂属性列的下标
14         /// </summary>
15         public String SplitFeature {get;set;}
16         /// <summary>
17         /// 各类别的数量统计
18         /// </summary>
19         public double[] ClassCount {get;set;}
20         /// <summary>
21         /// 数据量
22         /// </summary>
23         public int rowCount { get; set; }
24         /// <summary>
25         /// 各个子节点
26         /// </summary>
27         public List<Node> childNodes {get;set;}
28         /// <summary>
29         /// 父亲节点
30         /// </summary>
31         public Node Parent {get;set;}
32         /// <summary>
33         /// 该节点占比最大的类别
34         /// </summary>
35         public String finalResult {get;set;}
36         /// <summary>
37         /// 数的深度
38         /// </summary>
39         public int deep {get;set;}
40         /// <summary>
41         /// 节点占比最大类的标号
42         /// </summary>
43         public int result {get;set;}
44         /// <summary>
45         /// 子节点的错误数
46         /// </summary>
47         public int leafWrong {get;set;}
48         /// <summary>
49         /// 子节点的数目
50         /// </summary>
51         public int leafNode_Count {get;set;}
52 
53         public double getErrorCount()
54         {
55             return rowCount - ClassCount[result];
56         }
57         #region
58         public void setClassCount(double[] count)
59         {
60             this.ClassCount = count;
61             double max = ClassCount[0];
62             int result = 0;
63             for (int i = 1; i < ClassCount.Length; i++)
64             {
65                 if (max < ClassCount[i])
66                 {
67                     max = ClassCount[i];
68                     result = i;
69                 }
70             }
71             this.result = result;
72         }
73         #endregion
74 }
View Code

b)分裂信息类,该类存储节点进行分裂的信息,包括各个子节点的行坐标、子节点各个类的数目、该节点分裂的属性、属性的类型等。

技术分享
 1     class SplitInfo
 2     {
 3         /// <summary>
 4         /// 分裂的属性下标
 5         /// </summary>
 6         public int splitIndex { get; set; }
 7         /// <summary>
 8         /// 数据类型
 9         /// </summary>
10         public int type { get; set; }
11         /// <summary>
12         /// 分裂属性的取值
13         /// </summary>
14         public List<String> features { get; set; }
15         /// <summary>
16         /// 各个节点的行坐标链表
17         /// </summary>
18         public List<int>[] temp { get; set; }
19         /// <summary>
20         /// 每个节点各类的数目
21         /// </summary>
22         public double[][] class_Count { get; set; }
23     }
View Code

主方法findBestSplit(Node node,List<int> nums,int[] isUsed),该方法对节点进行分裂

其中:

node表示即将进行分裂的节点;

nums表示节点数据的行坐标列表;

isUsed表示到该节点位置所有属性的使用情况;

findBestSplit的这个方法主要有以下几个组成部分:

1)节点分裂停止的判定

节点分裂条件如上文所述,源代码如下:

技术分享
 1         public static bool ifEnd(Node node, double entropy,int[] isUsed)
 2         {
 3             try
 4             {
 5                 double[] count = node.ClassCount;
 6                 int rowCount = node.rowCount;
 7                 int maxResult = 0;
 8                 #region 数达到某一深度
 9                 int deep = node.deep;
10                 if (deep >= maxDeep)
11                 {
12                     maxResult = node.result + 1;
13                     node.feature_Type=("result");
14                     node.features=(new List<String>() { maxResult + "" });
15                     node.leafWrong=(rowCount - Convert.ToInt32(count[maxResult - 1]));
16                     node.leafNode_Count = 1;
17                     return true;
18                 }
19                 #endregion
20                 #region 纯度(其实跟后面的有点重了,记得要修改)
21                 //maxResult = 1;
22                 //for (int i = 1; i < count.Length; i++)
23                 //{
24                 //    if (count[i] / rowCount >= 0.95)
25                 //    {
26                 //        node.feature_Type=("result");
27                 //        node.features=(new List<String> { "" + (i + 1) });
28                 //        node.leafWrong=(rowCount - Convert.ToInt32(count[maxResult - 1]));
29                 //        node.leafNode_Count = 1;
30                 //        return true;
31                 //    }
32                 //}
33                 #endregion
34                 #region 熵为0
35                 if (entropy == 0)
36                 {
37                     maxResult = node.result+1;
38                     node.feature_Type=("result");
39                     node.features=(new List<String> { maxResult + "" });
40                     node.leafWrong=(rowCount - Convert.ToInt32(count[maxResult - 1]));
41                     node.leafNode_Count = 1;
42                     return true;
43                 }
44                 #endregion
45                 #region 属性已经分完
46                 bool flag = true;
47                 for (int i = 0; i < isUsed.Length - 1; i++)
48                 {
49                     if (isUsed[i] == 0)
50                     {
51                         flag = false;
52                         break;
53                     }
54                 }
55                 if (flag)
56                 {
57                     maxResult = node.result+1;
58                     node.feature_Type=("result");
59                     node.features=(new List<String> { "" + (maxResult) });
60                     node.leafWrong=(rowCount - Convert.ToInt32(count[maxResult - 1]));
61                     node.leafNode_Count = 1;
62                     return true;
63                 }
64                 #endregion
65                 #region 数据量少于100
66                 if (rowCount < Limit_Node)
67                 {
68                     maxResult = node.result+1;
69                     node.feature_Type=("result");
70                     node.features=(new List<String> { "" + (maxResult) });
71                     node.leafWrong=(rowCount - Convert.ToInt32(count[maxResult - 1]));
72                     node.leafNode_Count = 1;
73                     return true;
74                 }
75                 #endregion
76                 return false;
77             }
78             catch (Exception e)
79             {
80                 return false;
81             }
82         }
View Code

2)寻找最优的分裂属性

寻找最优的分裂属性需要计算每一个分裂属性分裂后的信息增益率,计算公式上文已给出,其中熵的计算代码如下:

技术分享
 1         public static double CalEntropy(double[] counts, int countAll)
 2         {
 3             try
 4             {
 5                 double allShang = 0;
 6                 for (int i = 0; i < counts.Length; i++)
 7                 {
 8                     if (counts[i] == 0)
 9                     {
10                         continue;
11                     }
12                     double rate = counts[i] / countAll;
13                     allShang = allShang + rate * Math.Log(rate, 2);
14                 }
15                 return allShang;
16             }
17             catch (Exception e)
18             {
19                 return 0;
20             }
21         }
View Code

3)进行分裂,同时对子节点进行迭代处理

其实就是递归的工程,对每一个子节点执行findBestSplit方法进行分裂。

findBestSplit源代码:

技术分享
  1         public static Node findBestSplit(Node node, List<int> nums, int[] isUsed)
  2         {
  3             try
  4             {
  5                 //判断是否继续分裂
  6                 double totalShang = CalEntropy(node.ClassCount, node.rowCount);
  7                 if (ifEnd(node, totalShang,isUsed))
  8                 {
  9                     return node;
 10                 }
 11                 #region 变量声明
 12                 SplitInfo info = new SplitInfo();
 13                 int RowCount = nums.Count;                  //样本总数
 14                 double jubuMax = 0;                         //局部最大熵
 15                 #endregion
 16                 for (int i = 0; i < isUsed.Length - 1; i++)
 17                 {
 18                     if (isUsed[i] == 1)
 19                     {
 20                         continue;
 21                     }
 22                     #region 离散变量
 23                     if (type[i] == 0)
 24                     {
 25                         int[] allFeatureCount = new int[0];         //所有类别的数量
 26                         double[][] allCount = new double[allNum[i]][];
 27                         for (int j = 0; j < allCount.Length; j++)
 28                         {
 29                             allCount[j] = new double[classCount];
 30                         }
 31                         int[] countAllFeature = new int[allNum[i]];
 32                         List<int>[] temp = new List<int>[allNum[i]];
 33                         for (int j = 0; j < temp.Length; j++)
 34                         {
 35                             temp[j] = new List<int>();
 36                         }
 37                         for (int j = 0; j < nums.Count; j++)
 38                         {
 39                             int index = Convert.ToInt32(allData[nums[j]][i]);
 40                             temp[index - 1].Add(nums[j]);
 41                             countAllFeature[index - 1]++;
 42                             allCount[index - 1][Convert.ToInt32(allData[nums[j]][lieshu - 1]) - 1]++;
 43                         }
 44                         double allShang = 0;
 45                         double chushu = 0;
 46                         for (int j = 0; j < allCount.Length; j++)
 47                         {
 48                             allShang = allShang + CalEntropy(allCount[j], countAllFeature[j]) * countAllFeature[j] / RowCount;
 49                             if (countAllFeature[j] > 0)
 50                             {
 51                                 double rate = countAllFeature[j] / Convert.ToDouble(RowCount);
 52                                 chushu = chushu + rate * Math.Log(rate, 2);
 53                             }
 54                         }
 55                         allShang = (-totalShang + allShang);
 56                         if (allShang > jubuMax)
 57                         {
 58                             info.features = new List<string>();
 59                             info.type = 0;
 60                             info.temp = temp;
 61                             info.splitIndex = i;
 62                             info.class_Count = allCount;
 63                             jubuMax = allShang;
 64                             allFeatureCount = countAllFeature;
 65                         }
 66                     }
 67                     #endregion
 68                     #region 连续变量
 69                     else
 70                     {
 71                         double[] leftCount = new double[classCount];          //做节点各个类别的数量
 72                         double[] rightCount = new double[classCount];        //右节点各个类别的数量
 73                         double[] count1 = new double[classCount];            //子集1的统计量
 74                         //double[] count2 = new double[node.getCount().Length];   //子集2的统计量
 75                         double[] count2 = new double[node.ClassCount.Length];   //子集2的统计量
 76                         for (int j = 0; j < node.ClassCount.Length; j++)
 77                         {
 78                             count2[j] = node.ClassCount[j];
 79                         }
 80                         int all1 = 0;                                           //子集1的样本量
 81                         int all2 = nums.Count;                                  //子集2的样本量
 82                         double lastValue = 0;                                  //上一个记录的类别
 83                         double currentValue = 0;                               //当前类别
 84                         double lastPoint = 0;                                   //上一个点的值
 85                         double currentPoint = 0;                                //当前点的值
 86                         int splitPoint = 0;
 87                         double splitValue = 0;
 88                         double[] values = new double[nums.Count];
 89                         for (int j = 0; j < values.Length; j++)
 90                         {
 91                             values[j] = allData[nums[j]][i];
 92                         }
 93                         QSort(values, nums, 0, nums.Count - 1);
 94                         double chushu = 0;
 95                         double lianxuMax = 0;                       //连续型属性的最大熵
 96                         for (int j = 0; j < nums.Count - 1; j++)
 97                         {
 98                             currentValue = allData[nums[j]][lieshu - 1];
 99                             currentPoint = allData[nums[j]][i];
100                             if (j == 0)
101                             {
102                                 lastValue = currentValue;
103                                 lastPoint = currentPoint;
104                             }
105                             if (currentValue != lastValue)
106                             {
107                                 double shang1 = CalEntropy(count1, all1);
108                                 double shang2 = CalEntropy(count2, all2);
109                                 double allShang = shang1 * all1 / (all1 + all2) + shang2 * all2 / (all1 + all2);
110                                 allShang = (-totalShang + allShang);
111                                 if (lianxuMax < allShang)
112                                 {
113                                     lianxuMax = allShang;
114                                     for (int k = 0; k < count1.Length; k++)
115                                     {
116                                         leftCount[k] = count1[k];
117                                         rightCount[k] = count2[k];
118                                     }
119                                     splitPoint = j;
120                                     splitValue = (currentPoint + lastPoint) / 2;
121                                 }
122                             }
123                             all1++;
124                             count1[Convert.ToInt32(currentValue) - 1]++;
125                             count2[Convert.ToInt32(currentValue) - 1]--;
126                             all2--;
127                             lastValue = currentValue;
128                             lastPoint = currentPoint;
129                         }
130                         double rate1 = Convert.ToDouble(leftCount[0] + leftCount[1]) / (leftCount[0] + leftCount[1] + rightCount[0] + rightCount[1]);
131                         chushu = 0;
132                         if (rate1 > 0)
133                         {
134                             chushu = chushu + rate1 * Math.Log(rate1, 2);
135                         }
136                         double rate2 = Convert.ToDouble(rightCount[0] + rightCount[1]) / (leftCount[0] + leftCount[1] + rightCount[0] + rightCount[1]);
137                         if (rate2 > 0)
138                         {
139                             chushu = chushu + rate2 * Math.Log(rate2, 2);
140                         }
141                         //lianxuMax = lianxuMax ;
142                         //lianxuMax = lianxuMax;
143                         if (lianxuMax > jubuMax)
144                         {
145                             //info.setSplitIndex(i);
146                             info.splitIndex=(i);
147                             //info.setFeatures(new List<String> { splitValue + "" });
148                             info.features = (new List<String> { splitValue + "" });
149                             //info.setType(1);
150                             info.type=(1);
151                             jubuMax = lianxuMax;
152                             //info.setType(1);
153                             List<int>[] allInt = new List<int>[2];
154                             allInt[0] = new List<int>();
155                             allInt[1] = new List<int>();
156                             for (int k = 0; k < splitPoint; k++)
157                             {
158                                 allInt[0].Add(nums[k]);
159                             }
160                             for (int k = splitPoint; k < nums.Count; k++)
161                             {
162                                 allInt[1].Add(nums[k]);
163                             }
164                             info.temp=(allInt);
165                             //info.setTemp(allInt);
166                             double[][] alls = new double[2][];
167                             alls[0] = new double[leftCount.Length];
168                             alls[1] = new double[leftCount.Length];
169                             for (int k = 0; k < leftCount.Length; k++)
170                             {
171                                 alls[0][k] = leftCount[k];
172                                 alls[1][k] = rightCount[k];
173                             }
174                             info.class_Count=(alls);
175                             //info.setclassCount(alls);
176                         }
177                     }
178                     #endregion
179                 }
180                 #region 如果找不到最佳的分裂属性,则设为叶节点
181                 if (info.splitIndex == -1)
182                 {
183                     double[] finalCount = node.ClassCount;
184                     double max = finalCount[0];
185                     int result = 1;
186                     for (int i = 1; i < finalCount.Length; i++)
187                     {
188                         if (finalCount[i] > max)
189                         {
190                             max = finalCount[i];
191                             result = (i + 1);
192                         }
193                     }
194                     node.feature_Type=("result");
195                     node.features=(new List<String> { "" + result });
196                     return node;
197                 }
198                 #endregion
199                 #region 分裂
200                 int deep = node.deep;
201                 node.SplitFeature=("" + info.splitIndex);
202 
203                 List<Node> childNode = new List<Node>();
204                 int[] used = new int[isUsed.Length];
205                 for (int i = 0; i < used.Length; i++)
206                 {
207                     used[i] = isUsed[i];
208                 }
209                 if (info.type == 0)
210                 {
211                     used[info.splitIndex] = 1;
212                     node.feature_Type=("离散");
213                 }
214                 else
215                 {
216                     used[info.splitIndex] = 0;
217                     node.feature_Type=("连续");
218                 }
219                 int sumLeaf = 0;
220                 int sumWrong = 0;
221                 List<int>[] rowIndex = info.temp;
222                 List<String> features = info.features;
223                 for (int j = 0; j < rowIndex.Length; j++)
224                 {
225                     if (rowIndex[j].Count == 0)
226                     {
227                         continue;
228                     }
229                     if (info.type == 0)
230                         features.Add("" + (j + 1));
231                     Node node1 = new Node();
232                     node1.setClassCount(info.class_Count[j]);
233                     node1.deep=(deep + 1);
234                     node1.rowCount = info.temp[j].Count;
235                     node1 = findBestSplit(node1, info.temp[j], used);
236                     sumLeaf += node1.leafNode_Count;
237                     sumWrong += node1.leafWrong;
238                     childNode.Add(node1);
239                 }
240                 node.leafNode_Count = (sumLeaf);
241                 node.leafWrong = (sumWrong);
242                 node.features=(features);
243                 node.childNodes=(childNode);
244                 #endregion
245                 return node;
246             }
247             catch (Exception e)
248             {
249                 Console.WriteLine(e.StackTrace);
250                 return node;
251             }
252         }
View Code

(4)剪枝

悲观剪枝方法(PEP):

技术分享
 1 public static void prune(Node node)
 2         {
 3             if (node.feature_Type == "result")
 4                 return;
 5             double treeWrong = node.getErrorCount() + 0.5;
 6             double leafError = node.leafWrong + 0.5 * node.leafNode_Count;
 7             double var = Math.Sqrt(leafError * (1 - Convert.ToDouble(leafError) / node.nums.Count));
 8             double panbie = leafError + var - treeWrong;
 9             if (panbie > 0)
10             {
11                 node.feature_Type=("result");
12                 node.childNodes=(null);
13                 int result = (node.result + 1);
14                 node.features=(new List<String>() { "" + result });
15             }
16             else
17             {
18                 List<Node> childNodes = node.childNodes;
19                 for (int i = 0; i < childNodes.Count; i++)
20                 {
21                     prune(childNodes[i]);
22                 }
23             }
24         }
View Code

C4.5核心算法的所有源代码:

技术分享
  1         #region C4.5核心算法
  2         /// <summary>
  3         /// 测试
  4         /// </summary>
  5         /// <param name="node"></param>
  6         /// <param name="data"></param>
  7         public static String findResult(Node node, String[] data)
  8         {
  9             List<String> featrues = node.features;
 10             String type = node.feature_Type;
 11             if (type == "result")
 12             {
 13                 return featrues[0];
 14             }
 15             int split = Convert.ToInt32(node.SplitFeature);
 16             List<Node> childNodes = node.childNodes;
 17             double[] resultCount = node.ClassCount;
 18             if (type == "连续")
 19             {
 20                 double value = Convert.ToDouble(featrues[0]);
 21                 if (Convert.ToDouble(data[split]) <= value)
 22                 {
 23                     return findResult(childNodes[0], data);
 24                 }
 25                 else
 26                 {
 27                     return findResult(childNodes[1], data);
 28                 }
 29             }
 30             else
 31             {
 32                 for (int i = 0; i < featrues.Count; i++)
 33                 {
 34                     if (data[split] == featrues[i])
 35                     {
 36                         return findResult(childNodes[i], data);
 37                     }
 38                     if (i == featrues.Count - 1)
 39                     {
 40                         double count = resultCount[0];
 41                         int maxInt = 0;
 42                         for (int j = 1; j < resultCount.Length; j++)
 43                         {
 44                             if (count < resultCount[j])
 45                             {
 46                                 count = resultCount[j];
 47                                 maxInt = j;
 48                             }
 49                         }
 50                         return findResult(childNodes[0], data);
 51                     }
 52                 }
 53             }
 54             return null;
 55         }
 56         /// <summary>
 57         /// 判断是否还需要分裂
 58         /// </summary>
 59         /// <param name="node"></param>
 60         /// <returns></returns>
 61         public static bool ifEnd(Node node, double entropy,int[] isUsed)
 62         {
 63             try
 64             {
 65                 double[] count = node.ClassCount;
 66                 int rowCount = node.rowCount;
 67                 int maxResult = 0;
 68                 #region 数达到某一深度
 69                 int deep = node.deep;
 70                 if (deep >= maxDeep)
 71                 {
 72                     maxResult = node.result + 1;
 73                     node.feature_Type=("result");
 74                     node.features=(new List<String>() { maxResult + "" });
 75                     node.leafWrong=(rowCount - Convert.ToInt32(count[maxResult - 1]));
 76                     node.leafNode_Count = 1;
 77                     return true;
 78                 }
 79                 #endregion
 80                 #region 纯度(其实跟后面的有点重了,记得要修改)
 81                 //maxResult = 1;
 82                 //for (int i = 1; i < count.Length; i++)
 83                 //{
 84                 //    if (count[i] / rowCount >= 0.95)
 85                 //    {
 86                 //        node.feature_Type=("result");
 87                 //        node.features=(new List<String> { "" + (i + 1) });
 88                 //        node.leafWrong=(rowCount - Convert.ToInt32(count[maxResult - 1]));
 89                 //        node.leafNode_Count = 1;
 90                 //        return true;
 91                 //    }
 92                 //}
 93                 #endregion
 94                 #region 熵为0
 95                 if (entropy == 0)
 96                 {
 97                     maxResult = node.result+1;
 98                     node.feature_Type=("result");
 99                     node.features=(new List<String> { maxResult + "" });
100                     node.leafWrong=(rowCount - Convert.ToInt32(count[maxResult - 1]));
101                     node.leafNode_Count = 1;
102                     return true;
103                 }
104                 #endregion
105                 #region 属性已经分完
106                 bool flag = true;
107                 for (int i = 0; i < isUsed.Length - 1; i++)
108                 {
109                     if (isUsed[i] == 0)
110                     {
111                         flag = false;
112                         break;
113                     }
114                 }
115                 if (flag)
116                 {
117                     maxResult = node.result+1;
118                     node.feature_Type=("result");
119                     node.features=(new List<String> { "" + (maxResult) });
120                     node.leafWrong=(rowCount - Convert.ToInt32(count[maxResult - 1]));
121                     node.leafNode_Count = 1;
122                     return true;
123                 }
124                 #endregion
125                 #region 数据量少于100
126                 if (rowCount < Limit_Node)
127                 {
128                     maxResult = node.result+1;
129                     node.feature_Type=("result");
130                     node.features=(new List<String> { "" + (maxResult) });
131                     node.leafWrong=(rowCount - Convert.ToInt32(count[maxResult - 1]));
132                     node.leafNode_Count = 1;
133                     return true;
134                 }
135                 #endregion
136                 return false;
137             }
138             catch (Exception e)
139             {
140                 return false;
141             }
142         }
143         #region 排序算法
144         public static void InsertSort(double[] values, List<int> arr, int StartIndex, int endIndex)
145         {
146             for (int i = StartIndex + 1; i <= endIndex; i++)
147             {
148                 int key = arr[i];
149                 double init = values[i];
150                 int j = i - 1;
151                 while (j >= StartIndex && values[j] > init)
152                 {
153                     arr[j + 1] = arr[j];
154                     values[j + 1] = values[j];
155                     j--;
156                 }
157                 arr[j + 1] = key;
158                 values[j + 1] = init;
159             }
160         }
161         static int SelectPivotMedianOfThree(double[] values, List<int> arr, int low, int high)
162         {
163             int mid = low + ((high - low) >> 1);//计算数组中间的元素的下标  
164 
165             //使用三数取中法选择枢轴  
166             if (values[mid] > values[high])//目标: arr[mid] <= arr[high]  
167             {
168                 swap(values, arr, mid, high);
169             }
170             if (values[low] > values[high])//目标: arr[low] <= arr[high]  
171             {
172                 swap(values, arr, low, high);
173             }
174             if (values[mid] > values[low]) //目标: arr[low] >= arr[mid]  
175             {
176                 swap(values, arr, mid, low);
177             }
178             //此时,arr[mid] <= arr[low] <= arr[high]  
179             return low;
180             //low的位置上保存这三个位置中间的值  
181             //分割时可以直接使用low位置的元素作为枢轴,而不用改变分割函数了  
182         }
183         static void swap(double[] values, List<int> arr, int t1, int t2)
184         {
185             double temp = values[t1];
186             values[t1] = values[t2];
187             values[t2] = temp;
188             int key = arr[t1];
189             arr[t1] = arr[t2];
190             arr[t2] = key;
191         }
192         static void QSort(double[] values, List<int> arr, int low, int high)
193         {
194             int first = low;
195             int last = high;
196 
197             int left = low;
198             int right = high;
199 
200             int leftLen = 0;
201             int rightLen = 0;
202 
203             if (high - low + 1 < 10)
204             {
205                 InsertSort(values, arr, low, high);
206                 return;
207             }
208 
209             //一次分割 
210             int key = SelectPivotMedianOfThree(values, arr, low, high);//使用三数取中法选择枢轴 
211             double inti = values[key];
212             int currentKey = arr[key];
213 
214             while (low < high)
215             {
216                 while (high > low && values[high] >= inti)
217                 {
218                     if (values[high] == inti)//处理相等元素  
219                     {
220                         swap(values, arr, right, high);
221                         right--;
222                         rightLen++;
223                     }
224                     high--;
225                 }
226                 arr[low] = arr[high];
227                 values[low] = values[high];
228                 while (high > low && values[low] <= inti)
229                 {
230                     if (values[low] == inti)
231                     {
232                         swap(values, arr, left, low);
233                         left++;
234                         leftLen++;
235                     }
236                     low++;
237                 }
238                 arr[high] = arr[low];
239                 values[high] = values[low];
240             }
241             arr[low] = currentKey;
242             values[low] = values[key];
243             //一次快排结束  
244             //把与枢轴key相同的元素移到枢轴最终位置周围  
245             int i = low - 1;
246             int j = first;
247             while (j < left && values[i] != inti)
248             {
249                 swap(values, arr, i, j);
250                 i--;
251                 j++;
252             }
253             i = low + 1;
254             j = last;
255             while (j > right && values[i] != inti)
256             {
257                 swap(values, arr, i, j);
258                 i++;
259                 j--;
260             }
261             QSort(values, arr, first, low - 1 - leftLen);
262             QSort(values, arr, low + 1 + rightLen, last);
263         }
264         #endregion
265         /// <summary>
266         /// 寻找最佳的分裂点
267         /// </summary>
268         /// <param name="num"></param>
269         /// <param name="node"></param>
270         public static Node findBestSplit(Node node, List<int> nums, int[] isUsed)
271         {
272             try
273             {
274                 //判断是否继续分裂
275                 double totalShang = CalEntropy(node.ClassCount, node.rowCount);
276                 if (ifEnd(node, totalShang,isUsed))
277                 {
278                     return node;
279                 }
280                 #region 变量声明
281                 SplitInfo info = new SplitInfo();
282                 int RowCount = nums.Count;                  //样本总数
283                 double jubuMax = 0;                         //局部最大熵
284                 #endregion
285                 for (int i = 0; i < isUsed.Length - 1; i++)
286                 {
287                     if (isUsed[i] == 1)
288                     {
289                         continue;
290                     }
291                     #region 离散变量
292                     if (type[i] == 0)
293                     {
294                         int[] allFeatureCount = new int[0];         //所有类别的数量
295                         double[][] allCount = new double[allNum[i]][];
296                         for (int j = 0; j < allCount.Length; j++)
297                         {
298                             allCount[j] = new double[classCount];
299                         }
300                         int[] countAllFeature = new int[allNum[i]];
301                         List<int>[] temp = new List<int>[allNum[i]];
302                         for (int j = 0; j < temp.Length; j++)
303                         {
304                             temp[j] = new List<int>();
305                         }
306                         for (int j = 0; j < nums.Count; j++)
307                         {
308                             int index = Convert.ToInt32(allData[nums[j]][i]);
309                             temp[index - 1].Add(nums[j]);
310                             countAllFeature[index - 1]++;
311                             allCount[index - 1][Convert.ToInt32(allData[nums[j]][lieshu - 1]) - 1]++;
312                         }
313                         double allShang = 0;
314                         double chushu = 0;
315                         for (int j = 0; j < allCount.Length; j++)
316                         {
317                             allShang = allShang + CalEntropy(allCount[j], countAllFeature[j]) * countAllFeature[j] / RowCount;
318                             if (countAllFeature[j] > 0)
319                             {
320                                 double rate = countAllFeature[j] / Convert.ToDouble(RowCount);
321                                 chushu = chushu + rate * Math.Log(rate, 2);
322                             }
323                         }
324                         allShang = (-totalShang + allShang);
325                         if (allShang > jubuMax)
326                         {
327                             info.features = new List<string>();
328                             info.type = 0;
329                             info.temp = temp;
330                             info.splitIndex = i;
331                             info.class_Count = allCount;
332                             jubuMax = allShang;
333                             allFeatureCount = countAllFeature;
334                         }
335                     }
336                     #endregion
337                     #region 连续变量
338                     else
339                     {
340                         double[] leftCount = new double[classCount];          //做节点各个类别的数量
341                         double[] rightCount = new double[classCount];        //右节点各个类别的数量
342                         double[] count1 = new double[classCount];            //子集1的统计量
343                         //double[] count2 = new double[node.getCount().Length];   //子集2的统计量
344                         double[] count2 = new double[node.ClassCount.Length];   //子集2的统计量
345                         for (int j = 0; j < node.ClassCount.Length; j++)
346                         {
347                             count2[j] = node.ClassCount[j];
348                         }
349                         int all1 = 0;                                           //子集1的样本量
350                         int all2 = nums.Count;                                  //子集2的样本量
351                         double lastValue = 0;                                  //上一个记录的类别
352                         double currentValue = 0;                               //当前类别
353                         double lastPoint = 0;                                   //上一个点的值
354                         double currentPoint = 0;                                //当前点的值
355                         int splitPoint = 0;
356                         double splitValue = 0;
357                         double[] values = new double[nums.Count];
358                         for (int j = 0; j < values.Length; j++)
359                         {
360                             values[j] = allData[nums[j]][i];
361                         }
362                         QSort(values, nums, 0, nums.Count - 1);
363                         double chushu = 0;
364                         double lianxuMax = 0;                       //连续型属性的最大熵
365                         for (int j = 0; j < nums.Count - 1; j++)
366                         {
367                             currentValue = allData[nums[j]][lieshu - 1];
368                             currentPoint = allData[nums[j]][i];
369                             if (j == 0)
370                             {
371                                 lastValue = currentValue;
372                                 lastPoint = currentPoint;
373                             }
374                             if (currentValue != lastValue)
375                             {
376                                 double shang1 = CalEntropy(count1, all1);
377                                 double shang2 = CalEntropy(count2, all2);
378                                 double allShang = shang1 * all1 / (all1 + all2) + shang2 * all2 / (all1 + all2);
379                                 allShang = (-totalShang + allShang);
380                                 if (lianxuMax < allShang)
381                                 {
382                                     lianxuMax = allShang;
383                                     for (int k = 0; k < count1.Length; k++)
384                                     {
385                                         leftCount[k] = count1[k];
386                                         rightCount[k] = count2[k];
387                                     }
388                                     splitPoint = j;
389                                     splitValue = (currentPoint + lastPoint) / 2;
390                                 }
391                             }
392                             all1++;
393                             count1[Convert.ToInt32(currentValue) - 1]++;
394                             count2[Convert.ToInt32(currentValue) - 1]--;
395                             all2--;
396                             lastValue = currentValue;
397                             lastPoint = currentPoint;
398                         }
399                         double rate1 = Convert.ToDouble(leftCount[0] + leftCount[1]) / (leftCount[0] + leftCount[1] + rightCount[0] + rightCount[1]);
400                         chushu = 0;
401                         if (rate1 > 0)
402                         {
403                             chushu = chushu + rate1 * Math.Log(rate1, 2);
404                         }
405                         double rate2 = Convert.ToDouble(rightCount[0] + rightCount[1]) / (leftCount[0] + leftCount[1] + rightCount[0] + rightCount[1]);
406                         if (rate2 > 0)
407                         {
408                             chushu = chushu + rate2 * Math.Log(rate2, 2);
409                         }
410                         //lianxuMax = lianxuMax ;
411                         //lianxuMax = lianxuMax;
412                         if (lianxuMax > jubuMax)
413                         {
414                             //info.setSplitIndex(i);
415                             info.splitIndex=(i);
416                             //info.setFeatures(new List<String> { splitValue + "" });
417                             info.features = (new List<String> { splitValue + "" });
418                             //info.setType(1);
419                             info.type=(1);
420                             jubuMax = lianxuMax;
421                             //info.setType(1);
422                             List<int>[] allInt = new List<int>[2];
423                             allInt[0] = new List<int>();
424                             allInt[1] = new List<int>();
425                             for (int k = 0; k < splitPoint; k++)
426                             {
427                                 allInt[0].Add(nums[k]);
428                             }
429                             for (int k = splitPoint; k < nums.Count; k++)
430                             {
431                                 allInt[1].Add(nums[k]);
432                             }
433                             info.temp=(allInt);
434                             //info.setTemp(allInt);
435                             double[][] alls = new double[2][];
436                             alls[0] = new double[leftCount.Length];
437                             alls[1] = new double[leftCount.Length];
438                             for (int k = 0; k < leftCount.Length; k++)
439                             {
440                                 alls[0][k] = leftCount[k];
441                                 alls[1][k] = rightCount[k];
442                             }
443                             info.class_Count=(alls);
444                             //info.setclassCount(alls);
445                         }
446                     }
447                     #endregion
448                 }
449                 #region 如果找不到最佳的分裂属性,则设为叶节点
450                 if (info.splitIndex == -1)
451                 {
452                     double[] finalCount = node.ClassCount;
453                     double max = finalCount[0];
454                     int result = 1;
455                     for (int i = 1; i < finalCount.Length; i++)
456                     {
457                         if (finalCount[i] > max)
458                         {
459                             max = finalCount[i];
460                             result = (i + 1);
461                         }
462                     }
463                     node.feature_Type=("result");
464                     node.features=(new List<String> { "" + result });
465                     return node;
466                 }
467                 #endregion
468                 #region 分裂
469                 int deep = node.deep;
470                 node.SplitFeature=("" + info.splitIndex);
471 
472                 List<Node> childNode = new List<Node>();
473                 int[] used = new int[isUsed.Length];
474                 for (int i = 0; i < used.Length; i++)
475                 {
476                     used[i] = isUsed[i];
477                 }
478                 if (info.type == 0)
479                 {
480                     used[info.splitIndex] = 1;
481                     node.feature_Type=("离散");
482                 }
483                 else
484                 {
485                     used[info.splitIndex] = 0;
486                     node.feature_Type=("连续");
487                 }
488                 int sumLeaf = 0;
489                 int sumWrong = 0;
490                 List<int>[] rowIndex = info.temp;
491                 List<String> features = info.features;
492                 for (int j = 0; j < rowIndex.Length; j++)
493                 {
494                     if (rowIndex[j].Count == 0)
495                     {
496                         continue;
497                     }
498                     if (info.type == 0)
499                         features.Add("" + (j + 1));
500                     Node node1 = new Node();
501                     node1.setClassCount(info.class_Count[j]);
502                     node1.deep=(deep + 1);
503                     node1.rowCount = info.temp[j].Count;
504                     node1 = findBestSplit(node1, info.temp[j], used);
505                     sumLeaf += node1.leafNode_Count;
506                     sumWrong += node1.leafWrong;
507                     childNode.Add(node1);
508                 }
509                 node.leafNode_Count = (sumLeaf);
510                 node.leafWrong = (sumWrong);
511                 node.features=(features);
512                 node.childNodes=(childNode);
513                 #endregion
514                 return node;
515             }
516             catch (Exception e)
517             {
518                 Console.WriteLine(e.StackTrace);
519                 return node;
520             }
521         }
522         /// <summary>
523         /// 计算熵
524         /// </summary>
525         /// <param name="counts"></param>
526         /// <param name="countAll"></param>
527         /// <returns></returns>
528         public static double CalEntropy(double[] counts, int countAll)
529         {
530             try
531             {
532                 double allShang = 0;
533                 for (int i = 0; i < counts.Length; i++)
534                 {
535                     if (counts[i] == 0)
536                     {
537                         continue;
538                     }
539                     double rate = counts[i] / countAll;
540                     allShang = allShang + rate * Math.Log(rate, 2);
541                 }
542                 return allShang;
543             }
544             catch (Exception e)
545             {
546                 return 0;
547             }
548         }
549 
550         #region 悲观剪枝
551         public static void prune(Node node)
552         {
553             if (node.feature_Type == "result")
554                 return;
555             double treeWrong = node.getErrorCount() + 0.5;
556             double leafError = node.leafWrong + 0.5 * node.leafNode_Count;
557             double var = Math.Sqrt(leafError * (1 - Convert.ToDouble(leafError) / node.rowCount));
558             double panbie = leafError + var - treeWrong;
559             if (panbie > 0)
560             {
561                 node.feature_Type = "result";
562                 node.childNodes = null;
563                 int result = node.result + 1;
564                 node.features= new List<String>() { "" + result };
565             }
566             else
567             {
568                 List<Node> childNodes = node.childNodes;
569                 for (int i = 0; i < childNodes.Count; i++)
570                 {
571                     prune(childNodes[i]);
572                 }
573             }
574         }
575         #endregion
576         #endregion
View Code

 

总结:

 

      要记住,C4.5是分类树最终要的算法,算法的思想其实很简单,但是分类的准确性高。可以说C4.5是ID3的升级版和强化版,解决了ID3未能解决的问题。要重点记住以下几个方面:

      1.C4.5是采用信息增益率选择分裂的属性,解决了ID3选择属性时的偏向性问题;

      2.C4.5能够对连续数据进行处理,采用一刀切的方式将连续型的数据切成两份,在选择切割点的时候使用信息增益作为择优的条件;

      3.C4.5采用悲观剪枝的策略,一定程度上降低了过拟合的影响。

 

 

决策树系列(四)——C4.5

标签:

原文地址:http://www.cnblogs.com/yonghao/p/5122703.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!