标签:
作者:寒小阳&&龙心尘
时间:2016年1月。
出处:
http://blog.csdn.net/han_xiaoyang/article/details/50521064
http://blog.csdn.net/longxinchen_ml/article/details/50521926
声明:版权所有,转载请联系作者并注明出处
在前一节当中我们讨论了神经网络静态的部分:包括神经网络结构、神经元类型、数据部分、损失函数部分等。这个部分我们集中讲讲动态的部分,主要是训练的事情,集中在实际工程实践训练过程中要注意的一些点,如何找到最合适的参数。
之前的博文我们提到过,我们需要比对数值梯度和解析法求得的梯度,实际工程中这个过程非常容易出错,下面提一些小技巧和注意点:
使用中心化公式,这一点我们之前也说过,使用如下的数值梯度计算公式:
h
是很小的数,因此显然上面的公式要精准得多。
使用相对误差做比较,这是实际工程中需要提到的另外一点,在我们得到数值梯度
哦,对对,还有一点,随着神经网络层数增多,相对误差是会增大的。这意味着,对于10层的神经网络,其实相对误差也许在1e-2级别就已经是可以正常使用的了。
使用双精度浮点数。如果你使用单精度浮点数计算,那你的实现可能一点问题都没有,但是相对误差却很大。实际工程中出现过,从单精度切到双精度,相对误差立马从1e-2降到1e-8的情况。
要留意浮点数的范围。一篇很好的文章是What Every Computer Scientist Should Know About Floating-Point Arithmetic。我们得保证计算时,所有的数都在浮点数的可计算范围内,太小的值(比如h)会带来计算上的问题。
Kinks。它指的是一种会导致数值梯度和解析梯度不一致的情况。会出现在使用ReLU或者类似的神经单元上时,对于很小的负数,比如x=-1e-6,因为x<0,所以解析梯度是绝对为0的,但是对于数值梯度而言,加入你计算
不过我们可以监控
设定步长h要小心。h肯定不能特别大,这个大家都知道对吧。但我并不是说h要设定的非常小,其实h设定的非常小也会有问题,因为h太小程序可能会有精度问题。很有意思的是,有时候在实际情况中h如果从非常小调为1e-4或者1e-6反倒会突然计算变得正常。
不要让正则化项盖过数据项。有时候会出现这个问题,因为损失函数是数据损失部分与正则化部分的求和。因此要特别注意正则化部分,你可以想象下,如果它盖过了数据部分,那么主要的梯度来源于正则化项,那这样根本就做不到正常的梯度回传和参数迭代更新。所以即使在检查数据部分的实现是否正确,也得先关闭正则化部分(系数
注意dropout和其他参数。在检查数值梯度和解析梯度的时候,如果不把dropout和其他参数都『关掉』的话,两者之间是一定会有很大差值的。不过『关掉』它们的负面影响是,没有办法检查这些部分的梯度是否正确。所以,一个合理的方式是,在计算x
,然后再计算解析梯度。
关于只检查几个维度。在实际情况中,梯度可能有上百万维参数。因此每个维度都检查一遍就不太现实了,一般都是只检查一些维度,然后假定其他的维度也都正确。要小心一点:要保证这些维度的每个参数都检查对比过了。
在开始训练之前,我们还得做一些检查,来确保不会运行了好一阵子,才发现计算代价这么大的训练其实并不正确。
在初始化之后看一眼loss。其实我们在用很小的随机数初始化神经网络后,第一遍计算loss可以做一次检查(当然要记得把正则化系数设为0)。以CIFAR-10为例,如果使用Softmax分类器,我们预测应该可以拿到值为2.302左右的初始loss(因为10个类别,初始概率应该都未0.1,Softmax损失是-log(正确类别的概率):-ln(0.1)=2.302)。
加回正则项,接着我们把正则化系数设为正常的小值,这时候再算损失/loss,应该比刚才要大一些。
试着去拟合一个小的数据集。最后一步,也是很重要的一步,在对大数据集做训练之前,我们可以先训练一个小的数据集(比如20张图片),然后看看你的神经网络能够做到0损失/loss(当然,是指的正则化系数为0的情况下),因为如果神经网络实现是正确的,在无正则化项的情况下,完全能够过拟合这一小部分的数据。
开始训练之后,我们可以通过监控一些指标来了解训练的状态。我们还记得有一些参数是我们认为敲定的,比如学习率,比如正则化系数。
下面这幅图表明了不同的学习率下,我们每轮完整迭代(这里的一轮完整迭代指的是所有的样本都被过了一遍,因为随机梯度下降中batch size的大小设定可能不同,因此我们不选每次mini-batch迭代为周期)过后的loss应该呈现的变化状况:
然后我们需要跟踪一下训练集和验证集上的准确度状况,以判断分类器所处的状态(过拟合程度如何):
最后一个需要留意的量是权重更新幅度和当前权重幅度的壁纸。注意哦,是权重更新部分,不一定是计算出来的梯度哦(比如训练用的vanilla sgd,那这个值就是梯度
和学习率
的乘积)。最好对于每组参数都独立地检查这个比例。我们没法下定论,但是在之前的工程实践中,一个合适的比例大概是1e-3。如果你得到的比例比这个值小很多,那么说明学习率设定太低了,反之则是设定太高了。
如果初始化不正确,那整个训练过程会越来越慢,甚至直接停掉。不过我们可以很容易发现这个问题。体现最明显的数据是每一层的激励和梯度的方差(波动状况)。举个例子说,如果初始化不正确,很有可能从前到后逐层的激励方差变化是如下的状况:
# 我们用标准差为0.01均值为0的高斯分布值来初始化权重(这不合理)
Layer 0: Variance: 1.005315e+00
Layer 1: Variance: 3.123429e-04
Layer 2: Variance: 1.159213e-06
Layer 3: Variance: 5.467721e-10
Layer 4: Variance: 2.757210e-13
Layer 5: Variance: 3.316570e-16
Layer 6: Variance: 3.123025e-19
Layer 7: Variance: 6.199031e-22
Layer 8: Variance: 6.623673e-25
大家看一眼上述的数值,就会发现,从前往后,激励值波动逐层降得非常厉害,这也就意味着反向算法中,计算回传梯度的时候,梯度都要接近0了,因此参数的迭代更新几乎就要衰减没了,显然不太靠谱。我们按照上一讲中提到的方式正确初始化权重,再逐层看激励/梯度值的方差,会发现它们的方差衰减没那么厉害,近似在一个级别:
# 重新正确设定权重:
Layer 0: Variance: 1.002860e+00
Layer 1: Variance: 7.015103e-01
Layer 2: Variance: 6.048625e-01
Layer 3: Variance: 8.517882e-01
Layer 4: Variance: 6.362898e-01
Layer 5: Variance: 4.329555e-01
Layer 6: Variance: 3.539950e-01
Layer 7: Variance: 3.809120e-01
Layer 8: Variance: 2.497737e-01
再看逐层的激励波动情况,你会发现即使到最后一层,网络也还是『活跃』的,意味着反向传播中回传的梯度值也是够的,神经网络是一个积极learning的状态。
最后再提一句,如果神经网络是用在图像相关的问题上,那么把首层的特征和数据画出来(可视化)可以帮助我们了解训练是否正常:
当我们确信解析梯度实现正确后,那就该在后向传播算法中使用它更新权重参数了。就单参数更新这个部分,也是有讲究的:
说起来,神经网络的最优化这个子话题在深度学习研究领域还真是很热。下面提一下大神们的论文中提到的方法,很多在实际应用中还真是很有效也很常用。
vanilla update
这是最简单的参数更新方式,拿到梯度之后,乘以设定的学习率,用现有的权重减去这个部分,得到新的权重参数(因为梯度表示变化率最大的增大方向,减去这个值之后,损失函数值才会下降)。记x
为权重参数向量x,而梯度为dx
,然后我们设定学习率为learning_rate
,则最简单的参数更新大家都知道:
# Vanilla update
x += - learning_rate * dx
当然learning_rate
是我们自己敲定的一个超变量值(在该更新方法中是全程不变的),而且数学上可以保证,当学习率足够低的时候,经这个过程迭代后,损失函数不会增加。
Momentum update
这是上面参数更新方法的一种小小的优化,通常说来,在深层次的神经网络中,收敛效率更高一些(速度更快)。这种参数更新方式源于物理学角度的优化
# 物理动量角度启发的参数更新
v = mu * v - learning_rate * dx # 合入一部分附加速度
x += v # 更新参数
这里v
是初始化为0的一个值,mu
是我们敲定的另外一个超变量(最常见的设定值为0.9,物理含义和摩擦力系数相关),一个比较粗糙的理解是,(随机)梯度下降可以看做从山上下山到山底的过程,这种方式,相当于在下山的过程中,加上了一定的摩擦阻力,消耗掉一小部分动力系统的能量,这样会比较高效地在山底停住,而不是持续震荡。对了,其实我们也可以用交叉验证来选择最合适的mu
值,一般我们会从[0.5, 0.9, 0.95, 0.99]里面选出最合适的。
Nesterov Momentum
这是momentum update的一个不同的版本,最近也用得很火。咳咳,据称,这种参数更新方法,有更好的凸函数和凸优化理论基础,而实际中的收敛效果也略优于momentum update。
此处的深层次原理,博主表示智商有点捉急…有兴趣的同学可以看看以下的2个材料:
它的思想对应着如下的代码:
x_ahead = x + mu * v
# 考虑到这个时候的x已经有一些变化了
v = mu * v - learning_rate * dx_ahead
x += v
工程上更实用的一个版本是:
v_prev = v # 当前状态先存储起来
v = mu * v - learning_rate * dx # 依旧按照Momentum update的方式更新
x += -mu * v_prev + (1 + mu) * v # 新的更新方式
在实际训练过程中,随着训练过程推进,逐渐衰减学习率是很有必要的。我们继续回到下山的场景中,刚下山的时候,可能离最低点很远,那我步子迈大一点也没什么关系,可是快到山脚了,我还激进地大步飞奔,一不小心可能就迈过去了。所以还不如随着下山过程推进,逐步减缓一点点步伐。不过这个『火候』确实要好好把握,衰减太慢的话,最低段震荡的情况依旧;衰减太快的话,整个系统下降的『动力』衰减太快,很快就下降不动了。下面提一些常见的学习率衰减方式:
实际工程实践中,大家还是更倾向于使用步伐衰减,因为它包含的超参数少一些,计算简单一些,可解释性稍微高一点。
最优化问题里还有一个非常有名的牛顿法,它按照如下的方式进行迭代更新参数:
这里的
比较尴尬的是,实际深度学习过程中,直接使用二次迭代的方法并不是很实用。原因是直接计算Hessian矩阵是一个非常耗时耗资源的过程。举个例子说,一个一百万参数的神经网络的Hessian矩阵维度为[1000000*1000000],算下来得占掉3725G的内存。当然,我们有L-BFGS这种近似Hessian矩阵的算法,可以解决内存问题。但是L-BFGS一般在全部数据集上计算,而不像我们用的mini-batch SGD一样在小batch小batch上迭代。现在有很多人在努力研究这个问题,试图让L-BFGS也能以mini-batch的方式稳定迭代更新。但就目前而言,大规模数据上的深度学习很少用到L-BFGS或者类似的二次迭代方法,倒是随机梯度下降这种简单的算法被广泛地使用着。
感兴趣的同学可以参考以下文献:
到目前为止大家看到的学习率更新方式,都是全局使用同样的学习率。调整学习率是一件很费时同时也容易出错的事情,因此大家一直希望有一种学习率自更新的方式,甚至可以细化到逐参数更新。现在确实有一些这种方法,其中大多数还需要额外的超参数设定,优势是在大多数超参数设定下,效果都比使用写死的学习率要好。下面稍微提一下常见的自适应方法(原谅博主底子不够,没办法深入数学细节讲解):
Adagrad是Duchi等在论文Adaptive Subgradient Methods for Online Learning and Stochastic Optimization中提出的自适应学习率算法。简单代码实现如下:
# 假定梯度为dx,参数向量为x
cache += dx**2
x += - learning_rate * dx / np.sqrt(cache + 1e-8)
其中变量cache
有着和梯度一样的维度,然后我们用这个变量持续累加梯度平方。之后这个值被用作参数更新步骤中的归一化。这种方法的好处是,对于高梯度的权重,它们的有效学习率被降低了;而小梯度的权重迭代过程中学习率提升了。而分母开根号这一步非常重要,不开根号的效果远差于开根号的情况。平滑参数1e-8
避免了除以0的情况。
RMSprop是一种非常有效,然后好像还没有被公开发布的自适应学习率更新方法。有意思的是,现在使用这个方法的人,都引用的大神Geoff Hinton的coursera课程第6节的slide第29页。RMSProp方法对Adagrad算法做了一个简单的优化,以减缓它的迭代强度,它开方的部分cache做了一个平滑处理,大致的示意代码如下:
cache = decay_rate * cache + (1 - decay_rate) * dx**2
x += - learning_rate * dx / np.sqrt(cache + 1e-8)
这里的decay_rate
是一个手动敲定的超参数,我们通常会在[0.9, 0.99, 0.999]中取值。需要特别注意的是,x+=
这个累加的部分和Adagrad是完全一样的,但是cache
本身是迭代变化的。
另外的方法还有:
下图是上述提到的多种参数更新方法下,损失函数最优化的示意图:
神经网络的训练过程中,不可避免地要和很多超参数打交道,这是我们需要手动设定的,大致包括:
对于大的深层次神经网络而言,我们需要很多的时间去训练。因此在此之前我们花一些时间去做超参数搜索,以确定最佳设定是非常有必要的。最直接的方式就是在框架实现的过程中,设计一个会持续变换超参数实施优化,并记录每个超参数下每一轮完整训练迭代下的验证集状态和效果。
未完待续…
标签:
原文地址:http://blog.csdn.net/longxinchen_ml/article/details/50521926