标签:
AbstractIoAcceptor类继承自AbstractIoService基类,并实现了IoAcceptor接口,它主要的成员变量是本地绑定地址。
private final List<SocketAddress> defaultLocalAddresses = new ArrayList<SocketAddress>(); private final List<SocketAddress> unmodifiableDefaultLocalAddresses = Collections.unmodifiableList(defaultLocalAddresses); private final Set<SocketAddress> boundAddresses = new HashSet<SocketAddress>();
在调用bind或unbind方法时需要先获取绑定锁bindLock,具体的绑定操作还是在bind0这个方法中实现的。一旦绑定成功后,就会向服务监听者发出服务激活的事件(ServiceActivated),同理,解除绑定也是在unbind0这个方法中具体实现的。一旦解除绑定成功后,就会向服务监听者发出服务激活的事件(ServiceDeActivated)。
AbstractIoConnector类继承自AbstractIoService基类,并实现了IoConnect接口,连接超时检查间隔时间默认是50毫秒,超时时间默认为1分钟,用户可以自行配置。此类中重要的方法就是connect方法,其中调用了具体的连接逻辑实现connect0,
protected abstract ConnectFuture connect0(SocketAddress remoteAddress, SocketAddress localAddress, IoSessionInitializer<? extends ConnectFuture> sessionInitializer);
AbstractIoConnector在AbstractIoService的基础上,在会话初始化结束时增加了一个功能,就是加入了一个监听者,当连接请求被取消时立即结束此会话。
protected final void finishSessionInitialization0(final IoSession session, IoFuture future) { // In case that ConnectFuture.cancel() is invoked before // setSession() is invoked, add a listener that closes the // connection immediately on cancellation. future.addListener(new IoFutureListener<ConnectFuture>() { public void operationComplete(ConnectFuture future) { if (future.isCanceled()) { session.close(); } } }); }
下面再来看一个IoProcessor接口的基本实现类SimpleIoProcessorPool,它的泛型参数是AbstractIoSession的子类,表示此Processor管理的具体会话类型。并且这个类还实现了池化,它会将多个IoSession分布到多个IoProcessor上去管理。下面是文档中给出的一个示例:
// Create a shared pool. SimpleIoProcessorPool<NioSession> pool = new SimpleIoProcessorPool<NioSession>(NioProcessor.class, 16); // Create two services that share the same pool. SocketAcceptor acceptor = new NioSocketAcceptor(pool); SocketConnector connector = new NioSocketConnector(pool); // Release related resources. connector.dispose(); acceptor.dispose(); pool.dispose();
与Processor池有关的包括如下这些成员变量:
//处理池大小,默认是处理器数+1, 便于多核分布处理 private static final int DEFAULT_SIZE = Runtime.getRuntime().availableProcessors() + 1; private final IoProcessor<T>[] pool;//IoProcessor池 private final AtomicInteger processorDistributor = new AtomicInteger();
Processor池的构造过程,其中有三种构造函数供选择来构造一个Processor :
pool = new IoProcessor[size];//构建池 boolean success = false; try { for (int i = 0; i < pool.length; i ++) { IoProcessor<T> processor = null; //有三种构造函数供选择来构造一个Processor try { try { processor = processorType.getConstructor(ExecutorService.class).newInstance(executor); } catch (NoSuchMethodException e) { // To the next step } if (processor == null) { try { processor = processorType.getConstructor(Executor.class).newInstance(executor); } catch (NoSuchMethodException e) { // To the next step } } if (processor == null) { try { processor = processorType.getConstructor().newInstance(); } catch (NoSuchMethodException e) { // To the next step } } } catch (RuntimeException e) { throw e; } catch (Exception e) { throw new RuntimeIoException( "Failed to create a new instance of " + processorType.getName(), e); } pool[i] = processor; } success = true; } finally { if (!success) { dispose(); } }
从Processor池中分配一个processor的过程,注意一个processor是可以同时管理多个session的。
//返回session所在的processor,若没分配,则为之分配一个 private IoProcessor<T> getProcessor(T session) { IoProcessor<T> p = (IoProcessor<T>) //看session的属性中是否保存对应的Processor session.getAttribute(PROCESSOR); //还没为此session分配processor if (p == null) { //从池中取一个processor p = nextProcessor(); IoProcessor<T> oldp = (IoProcessor<T>) session.setAttributeIfAbsent(PROCESSOR, p); //原来的processor if (oldp != null) { p = oldp; } } return p; } //从池中分配一个Processor private IoProcessor<T> nextProcessor() { checkDisposal(); return pool[Math.abs(processorDistributor.getAndIncrement()) % pool.length]; }
作者:phinecos(洞庭散人)
出处:http://phinecos.cnblogs.com/
本文版权归作者和博客园共有,欢迎转载,但请保留此段声明,并在文章页面明显位置给出原文连接。
标签:
原文地址:http://www.cnblogs.com/pampam/p/5135266.html