码迷,mamicode.com
首页 > 其他好文 > 详细

数的划分

时间:2016-01-17 14:54:12      阅读:104      评论:0      收藏:0      [点我收藏+]

标签:

问题描述
  将整数n分成k份,且每份不能为空,任意两份不能相同(不考虑顺序)。
  例如:n=7,k=3,下面三种分法被认为是相同的。
  1,1,5; 1,5,1; 5,1,1;
  问有多少种不同的分法。
输入格式
  n,k
输出格式
  一个整数,即不同的分法
样例输入
7 3
样例输出
4 {四种分法为:1,1,5;1,2,4;1,3,3;2,2,3;}
数据规模和约定
  6<n<=200,2<=k<=6
思路:考虑用动态规划解题,用dp[i][j]表示数i划分成j份的总数,

1、最小的那一份为1,则为dp[i-1][j-1],表示将剩下的i-1分成j-1份。

2、最小的那一份大于1,即>=2,先把j份每个里面放1,然后在把剩下的i-j分成j份。

从而可得状态转移方程为:dp[i][j]=dp[i-1][j-1]+dp[i-j][j];(i>=j)

例:求dp[4][3](自底向上)

dp[0][0]=0 dp[0][1]=0 dp[0][2]=0 dp[0][3]=0 

dp[1][0]=0 dp[1][1]=0 dp[1][2]=0 dp[1][3]=0
dp[2][0]=0 dp[2][1]=1,dp[2][2]=1 dp[2][3]=0
dp[3][0]=0 dp[3][1]=dp[2][0]+dp[2][1]=1, dp[3][2]=dp[2][1]+dp[1][2]=1, dp[3][3]=dp[2][2]+dp[0][3]=1
dp[4][3]=dp[3][2]+dp[1][3]=1

注:尽管dp[1][1]为1,但只要dp[2][1]和dp[2][2]是正确的,赋值为0无影响

#include <stdio.h>
int dp[201][7];//全局变量初始为0
int main()
{
    int n,k,i,j;
    scanf("%d%d",&n,&k);
    dp[2][2] = dp[2][1] = 1; 
    //注意:i从第3行起、j从第1列始
    for(i=3;i<n;i++)
        for(j=1;j<=k;j++)
            dp[i][j] = dp[i-1][j-1] + dp[i-j][j];
    dp[n][k] = dp[n-1][k-1] + dp[n-k][k];
    printf("%d\n",dp[n][k]);
    return 0;
}

 

数的划分

标签:

原文地址:http://www.cnblogs.com/520xiuge/p/5137212.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!