码迷,mamicode.com
首页 > 其他好文 > 详细

【HDOJ】3386 Final Kichiku “Lanlanshu”

时间:2016-01-20 20:49:12      阅读:228      评论:0      收藏:0      [点我收藏+]

标签:

数位DP。
需要注意的是需要特殊处理前导0,另外连续的==匹配,不要计重了,尽量贪心的匹配掉。

  1 /* 3886 */
  2 #include <iostream>
  3 #include <sstream>
  4 #include <string>
  5 #include <map>
  6 #include <queue>
  7 #include <set>
  8 #include <stack>
  9 #include <vector>
 10 #include <deque>
 11 #include <bitset>
 12 #include <algorithm>
 13 #include <cstdio>
 14 #include <cmath>
 15 #include <ctime>
 16 #include <cstring>
 17 #include <climits>
 18 #include <cctype>
 19 #include <cassert>
 20 #include <functional>
 21 #include <iterator>
 22 #include <iomanip>
 23 using namespace std;
 24 //#pragma comment(linker,"/STACK:102400000,1024000")
 25 
 26 #define sti                set<int>
 27 #define stpii            set<pair<int, int> >
 28 #define mpii            map<int,int>
 29 #define vi                vector<int>
 30 #define pii                pair<int,int>
 31 #define vpii            vector<pair<int,int> >
 32 #define rep(i, a, n)     for (int i=a;i<n;++i)
 33 #define per(i, a, n)     for (int i=n-1;i>=a;--i)
 34 #define clr                clear
 35 #define pb                 push_back
 36 #define mp                 make_pair
 37 #define fir                first
 38 #define sec                second
 39 #define all(x)             (x).begin(),(x).end()
 40 #define SZ(x)             ((int)(x).size())
 41 #define lson            l, mid, rt<<1
 42 #define rson            mid+1, r, rt<<1|1
 43 
 44 const int mod = 100000000;
 45 const int maxl = 105;
 46 const int maxn = 105;
 47 char ps[maxl], ps_[maxl];
 48 char sa[maxl], sb[maxl];
 49 int a[maxl], plen;
 50 int dp[maxl][maxn][2][10];
 51 bool dp_[maxl][maxn];
 52 
 53 void f(char *s, int& l) {
 54     int len = strlen(s);
 55     int i = 0;
 56 
 57     l = 0;
 58     while (i<len-1 && s[i]==0)
 59         ++i;
 60     while (i < len) {
 61         s[l++] = s[i++]-0;
 62     }
 63     s[l] = \0;
 64 }
 65 
 66 bool check(char ch, int d, int dd) {
 67     if (ch == /)
 68         return d < dd;
 69     if (ch == -)
 70         return d == dd;
 71     if (ch == \\)
 72         return d > dd;
 73     return false;
 74 }
 75 
 76 bool judge(char *s, int len) {
 77     if (len==1 || check(ps[1], s[0], s[1])==false)
 78         return false;
 79 
 80     memset(dp_, false, sizeof(dp_));
 81     dp_[1][1] = true;
 82 
 83     rep(j, 1, plen) {
 84         rep(i, 1, len-1) {
 85             if (!dp_[j][i])
 86                 continue;
 87 
 88             if (check(ps[j], s[i], s[i+1]))
 89                 dp_[j][i+1] = true;
 90             if (check(ps[j+1], s[i], s[i+1]))
 91                 dp_[j+1][i+1] = true;
 92         }
 93     }
 94 
 95     return dp_[plen][len-1];
 96 }
 97 
 98 int cal(char *s, int len) {
 99     if (len <= 1)
100         return 0;
101 
102     memset(dp, -1, sizeof(dp));
103     rep(k, 0, s[0]) {
104         rep(kk, 0, 10) {
105             if (k == 0) {
106                 if (dp[0][1][0][kk] == -1)
107                     dp[0][1][0][kk] = 1;
108                 else
109                     ++dp[0][1][0][kk];
110                 continue;
111             }
112 
113             if (check(ps[1], k, kk)) {
114                 if (dp[1][1][0][kk] == -1)
115                     dp[1][1][0][kk] = 1;
116                 else
117                     ++dp[1][1][0][kk];
118             }
119         }
120     }
121     rep(kk, 0, s[1]+1) {
122         int at = kk==s[1];
123         if (check(ps[1], s[0], kk)) {
124             if (dp[1][1][at][kk] == -1)
125                 dp[1][1][at][kk] = 1;
126             else
127                 ++dp[1][1][at][kk];
128         }
129     }
130 
131     rep(i, 0, plen+1) {
132         int ii = i + 1;
133         rep(j, 1, len-1) {
134             int jj = j + 1;
135 
136             // consider boundary
137             if (dp[i][j][1][s[j]] >= 0) {
138                 rep(k, 0, s[j+1]+1) {
139                     int at = k==s[j+1];
140                     
141                     if (check(ps[ii], s[j], k)) {
142                         if (dp[ii][jj][at][k] >= 0) {
143                             dp[ii][jj][at][k] = (dp[ii][jj][at][k] + dp[i][j][1][s[j]]) % mod;
144                         } else {
145                             dp[ii][jj][at][k] = dp[i][j][1][s[j]];
146                         }
147                     } else if (check(ps[i], s[j], k)) {
148                         if (dp[i][jj][at][k] >= 0) {
149                             dp[i][jj][at][k] = (dp[i][jj][at][k] + dp[i][j][1][s[j]]) % mod;
150                         } else {
151                             dp[i][jj][at][k] = dp[i][j][1][s[j]];
152                         }
153                     }
154                 }
155             }
156 
157             // consider < boundary
158             rep(k, 0, 10) {
159                 if (dp[i][j][0][k] < 0)
160                     continue;
161                 rep(kk, 0, 10) {
162                     if (i == 0) {
163                         if (k == 0) {
164                             if (dp[i][jj][0][kk] >= 0) {
165                                 dp[i][jj][0][kk] = (dp[i][jj][0][kk] + dp[i][j][0][k]) % mod;
166                             } else {
167                                 dp[i][jj][0][kk] = dp[i][j][0][k];
168                             }
169                         } else {
170                             if (check(ps[ii], k, kk)) {
171                                 if (dp[ii][jj][0][kk] >= 0) {
172                                     dp[ii][jj][0][kk] = (dp[ii][jj][0][kk] + dp[i][j][0][k]) % mod;
173                                 } else {
174                                     dp[ii][jj][0][kk] = dp[i][j][0][k];
175                                 }
176                             }
177                         }
178                         continue;
179                     }
180 
181                     if (check(ps[ii], k, kk)) {
182                         if (dp[ii][jj][0][kk] >= 0) {
183                             dp[ii][jj][0][kk] = (dp[ii][jj][0][kk] + dp[i][j][0][k]) % mod;
184                         } else {
185                             dp[ii][jj][0][kk] = dp[i][j][0][k];
186                         }
187                     } else if (check(ps[i], k, kk)) {
188                         if (dp[i][jj][0][kk] >= 0) {
189                             dp[i][jj][0][kk] = (dp[i][jj][0][kk] + dp[i][j][0][k]) % mod;
190                         } else {
191                             dp[i][jj][0][kk] = dp[i][j][0][k];
192                         }
193                     }
194                 }
195             }
196         }
197     }
198 
199     int ret = 0;
200 
201     rep(k, 0, 10) {
202         if (dp[plen][len-1][1][k] >= 0)
203             ret = (ret + dp[plen][len-1][1][k]) % mod;
204         if (dp[plen][len-1][0][k] >= 0)
205             ret = (ret + dp[plen][len-1][0][k]) % mod;
206     }
207 
208     return ret;
209 }
210 
211 void solve() {
212     int alen, blen;
213     int ans = 0, tmp;
214 
215     plen = strlen(ps+1);
216     f(sa, alen);
217     f(sb, blen);
218 
219     tmp = cal(sb, blen);
220     ans += tmp;
221     tmp = cal(sa, alen);
222     ans -= tmp;
223     if (judge(sa, alen))
224         ++ans;
225 
226     ans = (ans + mod) % mod;
227     printf("%08d\n", ans);
228 }
229 
230 int main() {
231     ios::sync_with_stdio(false);
232     #ifndef ONLINE_JUDGE
233         freopen("data.in", "r", stdin);
234         freopen("data.out", "w", stdout);
235     #endif
236 
237     while (scanf("%s", ps+1)!=EOF) {
238         scanf("%s %s", sa, sb);
239         solve();
240     }
241 
242     #ifndef ONLINE_JUDGE
243         printf("time = %d.\n", (int)clock());
244     #endif
245 
246     return 0;
247 }

 

【HDOJ】3386 Final Kichiku “Lanlanshu”

标签:

原文地址:http://www.cnblogs.com/bombe1013/p/5146364.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!