题意:给几条下凹二次函数曲线,然后问[0,1000]所有位置中,每个位置的值为曲线中最大值的值,问所有位置的最小值是多少
思路:三分法,由于都是下凹函数,所以所有曲线合并起来,仍然是一个下凹函数,满足单峰,用三分求极值
代码:
#include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; const int N = 10005; int t, n, ans; struct Line { double a, b, c; } l[N]; double cal(double x) { double ans = l[0].a * x * x + l[0].b * x + l[0].c; for (int i = 1; i < n; i++) ans = max(ans, l[i].a * x * x + l[i].b * x + l[i].c); return ans; } double solve() { double l = 0, r = 1000; while (fabs(l - r) > 1e-9) { double ml = (2 * l + r) / 3; double mr = (l + 2 * r) / 3; if (cal(ml) < cal(mr)) r = mr; else l = ml; } return cal(l); } int main() { scanf("%d", &t); while (t--) { scanf("%d", &n); for (int i = 0; i < n; i++) scanf("%lf%lf%lf", &l[i].a, &l[i].b, &l[i].c); printf("%.4lf\n", solve()); } return 0; }
UVA 1476 - Error Curves(三分法),布布扣,bubuko.com
原文地址:http://blog.csdn.net/accelerator_/article/details/38067543