码迷,mamicode.com
首页 > 其他好文 > 详细

证明定积分等式

时间:2016-01-21 19:57:01      阅读:116      评论:0      收藏:0      [点我收藏+]

标签:

证明:

$$\int_{0}^{\frac{\pi}{2}}\ln (1+\cos x)dx=-\frac{\pi}{2}\ln 2 +\int_{0}^{\frac{\pi}{2}}\frac{x}{\sin x}dx$$

 

Proof.

\begin{align*}

\int_{0}^{\frac{\pi}{2}}\ln (1+\cos x) dx &=\int_{0}^{\frac{\pi}{2}}\ln(\sin x (\csc x + \cot x))dx\\

&=\int_{0}^{\frac{\pi}{2}} \ln \sin x dx +\int_{0}^{\frac{\pi}{2}}\ln (\csc x +\cot x)dx\\

&:=I_{1}+I_{2}

\end{align*}

计算$I_{1}$和$I_{2}$

\begin{align*}

\int_{0}^{\frac{\pi}{2}}\ln \sin x dx+\int_{0}^{\frac{\pi}{2}}\ln \cos x dx &=\int_{0}^{\frac{\pi}{2}}\ln \frac{\sin 2x}{2}dx\\

&=-\frac{\pi \ln 2}{2}+\frac{1}{2}\int_{0}^{\pi}\ln \sin x dx\\

&=-\frac{\pi \ln 2}{2}+\int_{0}^{\frac{\pi}{2}}\ln \cos x dx

\end{align*}

从而 $I_{1}=-\frac{\pi \ln 2}{2}$, $I_{2}$分部积分处理即可。

证明定积分等式

标签:

原文地址:http://www.cnblogs.com/zhangwenbiao/p/5149041.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!