标签:
前一阵子有一个学弟问kmeans算法的初始中心点怎么选,有没有什么算法。我让他看看kmeans++,结果学弟说有地方没看懂。然后,他不懂的地方,我给标注了一下。
下面是网上的资料,我对画线的地方做了标注。
k-means++算法选择初始seeds的基本思想就是:初始的聚类中心之间的相互距离要尽可能的远。wiki上对该算法的描述是如下:
从上面的算法描述上可以看到,算法的关键是第3步,如何将D(x)反映到点被选择的概率上,一种算法如下:
从上图可以看出,假设Random落在D(x3)这个区间内,“然后用Random -= D(x),直到其<=0"此时找到的点就是D(x3),就是这步的中心点。
其实这种算法还是对照着代码看比较清楚。下面粘个python的kmeans++
from math import pi, sin, cos from collections import namedtuple from random import random, choice from copy import copy try: import psyco psyco.full() except ImportError: pass FLOAT_MAX = 1e100 class Point: __slots__ = ["x", "y", "group"] def __init__(self, x=0.0, y=0.0, group=0): self.x, self.y, self.group = x, y, group def generate_points(npoints, radius): points = [Point() for _ in xrange(npoints)] # note: this is not a uniform 2-d distribution for p in points: r = random() * radius ang = random() * 2 * pi p.x = r * cos(ang) p.y = r * sin(ang) return points def nearest_cluster_center(point, cluster_centers): """Distance and index of the closest cluster center""" def sqr_distance_2D(a, b): return (a.x - b.x) ** 2 + (a.y - b.y) ** 2 min_index = point.group min_dist = FLOAT_MAX for i, cc in enumerate(cluster_centers): d = sqr_distance_2D(cc, point) if min_dist > d: min_dist = d min_index = i return (min_index, min_dist) def kpp(points, cluster_centers): cluster_centers[0] = copy(choice(points)) d = [0.0 for _ in xrange(len(points))] for i in xrange(1, len(cluster_centers)): sum = 0 for j, p in enumerate(points): d[j] = nearest_cluster_center(p, cluster_centers[:i])[1] sum += d[j] sum *= random() for j, di in enumerate(d): sum -= di if sum > 0: continue cluster_centers[i] = copy(points[j]) break for p in points: p.group = nearest_cluster_center(p, cluster_centers)[0] def lloyd(points, nclusters): cluster_centers = [Point() for _ in xrange(nclusters)] # call k++ init kpp(points, cluster_centers) lenpts10 = len(points) >> 10 changed = 0 while True: # group element for centroids are used as counters for cc in cluster_centers: cc.x = 0 cc.y = 0 cc.group = 0 for p in points: cluster_centers[p.group].group += 1 cluster_centers[p.group].x += p.x cluster_centers[p.group].y += p.y for cc in cluster_centers: cc.x /= cc.group cc.y /= cc.group # find closest centroid of each PointPtr changed = 0 for p in points: min_i = nearest_cluster_center(p, cluster_centers)[0] if min_i != p.group: changed += 1 p.group = min_i # stop when 99.9% of points are good if changed <= lenpts10: break for i, cc in enumerate(cluster_centers): cc.group = i return cluster_centers def print_eps(points, cluster_centers, W=400, H=400): Color = namedtuple("Color", "r g b"); colors = [] for i in xrange(len(cluster_centers)): colors.append(Color((3 * (i + 1) % 11) / 11.0, (7 * i % 11) / 11.0, (9 * i % 11) / 11.0)) max_x = max_y = -FLOAT_MAX min_x = min_y = FLOAT_MAX for p in points: if max_x < p.x: max_x = p.x if min_x > p.x: min_x = p.x if max_y < p.y: max_y = p.y if min_y > p.y: min_y = p.y scale = min(W / (max_x - min_x), H / (max_y - min_y)) cx = (max_x + min_x) / 2 cy = (max_y + min_y) / 2 print "%%!PS-Adobe-3.0\n%%%%BoundingBox: -5 -5 %d %d" % (W + 10, H + 10) print ("/l {rlineto} def /m {rmoveto} def\n" + "/c { .25 sub exch .25 sub exch .5 0 360 arc fill } def\n" + "/s { moveto -2 0 m 2 2 l 2 -2 l -2 -2 l closepath " + " gsave 1 setgray fill grestore gsave 3 setlinewidth" + " 1 setgray stroke grestore 0 setgray stroke }def") for i, cc in enumerate(cluster_centers): print ("%g %g %g setrgbcolor" % (colors[i].r, colors[i].g, colors[i].b)) for p in points: if p.group != i: continue print ("%.3f %.3f c" % ((p.x - cx) * scale + W / 2, (p.y - cy) * scale + H / 2)) print ("\n0 setgray %g %g s" % ((cc.x - cx) * scale + W / 2, (cc.y - cy) * scale + H / 2)) print "\n%%%%EOF" def main(): npoints = 30000 k = 7 # # clusters points = generate_points(npoints, 10) cluster_centers = lloyd(points, k) print_eps(points, cluster_centers) main()
标签:
原文地址:http://www.cnblogs.com/nocml/p/5150756.html