标签:
在上一篇博文中,我们讲述了使用链地址法解决冲突的方法。这里我们介绍另一种方式:开地址法解决冲突。
基本思想:当关键码key的哈希地址H0 = hash(key)出现冲突时,以H0为基础,产生另一个哈希地址H1 ,如果H1仍然冲突,再以H0
为基础,产生另一个哈希地址H2 ,…,直到找出一个不冲突的哈希地址Hi ,将相应元素存入其中。根据增量序列的取值方式不同,相应的再散列方式也不同。主要有以下四种:
线性探测再散列
二次探测再散列
伪随机探测再散列
双散列法
(一)线性探测再散列
理解起来很简单,就是如果使用哈希函数映射的位置已经有数据,那么就依次顺序的向后查找,直到有一个位置还没有数据,将其放入。或者表已经满了。注意:表元素个数/表长<=1是基本要求(也就是 装填因子 )。
堆积现象
定义:用线性探测法处理冲突时,当表中i,i+1,i+2个位置上都有数据时,下一个散列地址如果是i,i+1,i+2和i+3都会要求填入i+3的位置,多个第一个散列地址不同的记录争夺同一个后继散列地址。
若散列函数不好、或装填因子a 过大,都会使堆积现象加剧。
我们将链地址法的代码稍加改动,status 保存状态,有EMPTY, DELETED, ACTIVE,删除的时候只是逻辑删除,即将状态置为DELETED,当插入新的key 时,只要不是ACTIVE 的位置都是可以放入,如果是DELETED位置,需要将原来元素先释放free掉,再插入。common.h
#ifndef _COMMON_H_ #define _COMMON_H_ #include <unistd.h> #include <sys/types.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #define ERR_EXIT(m) do { perror(m); exit(EXIT_FAILURE); } while (0) #endifhash.h
#ifndef _HASH_H_ #define _HASH_H_ typedef struct hash hash_t; typedef unsigned int (*hashfunc_t)(unsigned int, void *); hash_t *hash_alloc(unsigned int buckets, hashfunc_t hash_func); void hash_free(hash_t *hash); void *hash_lookup_entry(hash_t *hash, void *key, unsigned int key_size); void hash_add_entry(hash_t *hash, void *key, unsigned int key_size, void *value, unsigned int value_size); void hash_free_entry(hash_t *hash, void *key, unsigned int key_size); #endif /* _HASH_H_ */
#include "hash.h" #include "common.h" #include <assert.h> typedef enum entry_status { EMPTY, ACTIVE, DELETED } entry_status_t; typedef struct hash_node { enum entry_status status; void *key; void *value; } hash_node_t; struct hash { unsigned int buckets; hashfunc_t hash_func; hash_node_t *nodes; }; unsigned int hash_get_bucket(hash_t *hash, void *key); hash_node_t *hash_get_node_by_key(hash_t *hash, void *key, unsigned int key_size); hash_t *hash_alloc(unsigned int buckets, hashfunc_t hash_func) { hash_t *hash = (hash_t *)malloc(sizeof(hash_t)); //assert(hash != NULL); hash->buckets = buckets; hash->hash_func = hash_func; int size = buckets * sizeof(hash_node_t); hash->nodes = (hash_node_t *)malloc(size); memset(hash->nodes, 0, size); printf("The hash table has allocate.\n"); return hash; } void hash_free(hash_t *hash) { unsigned int buckets = hash->buckets; int i; for (i = 0; i < buckets; i++) { if (hash->nodes[i].status != EMPTY) { free(hash->nodes[i].key); free(hash->nodes[i].value); } } free(hash->nodes); free(hash); printf("The hash table has free.\n"); } void *hash_lookup_entry(hash_t *hash, void *key, unsigned int key_size) { hash_node_t *node = hash_get_node_by_key(hash, key, key_size); if (node == NULL) { return NULL; } return node->value; } void hash_add_entry(hash_t *hash, void *key, unsigned int key_size, void *value, unsigned int value_size) { if (hash_lookup_entry(hash, key, key_size)) { fprintf(stderr, "duplicate hash key\n"); return; } unsigned int bucket = hash_get_bucket(hash, key); unsigned int i = bucket; // 找到的位置已经有人存活,向下探测 while (hash->nodes[i].status == ACTIVE) { i = (i + 1) % hash->buckets; if (i == bucket) { // 没找到,并且表满 return; } } hash->nodes[i].status = ACTIVE; if (hash->nodes[i].key) //释放原来被逻辑删除的项的内存 { free(hash->nodes[i].key); } hash->nodes[i].key = malloc(key_size); memcpy(hash->nodes[i].key, key, key_size); if (hash->nodes[i].value) //释放原来被逻辑删除的项的内存 { free(hash->nodes[i].value); } hash->nodes[i].value = malloc(value_size); memcpy(hash->nodes[i].value, value, value_size); } void hash_free_entry(hash_t *hash, void *key, unsigned int key_size) { hash_node_t *node = hash_get_node_by_key(hash, key, key_size); if (node == NULL) return; // 逻辑删除,置标志位 node->status = DELETED; } unsigned int hash_get_bucket(hash_t *hash, void *key) { // 返回哈希地址 unsigned int bucket = hash->hash_func(hash->buckets, key); if (bucket >= hash->buckets) { fprintf(stderr, "bad bucket lookup\n"); exit(EXIT_FAILURE); } return bucket; } hash_node_t *hash_get_node_by_key(hash_t *hash, void *key, unsigned int key_size) { unsigned int bucket = hash_get_bucket(hash, key); unsigned int i = bucket; while (hash->nodes[i].status != EMPTY && memcmp(key, hash->nodes[i].key, key_size) != 0) { i = (i + 1) % hash->buckets; if (i == bucket) // 探测了一圈 { // 没找到,并且表满 return NULL; } } // 比对正确,还得确认是否还存活 if (hash->nodes[i].status == ACTIVE) { return &(hash->nodes[i]); } // 如果运行到这里,说明i为空位或已被删除 return NULL; }main.c(测试代码)
#include "hash.h" #include "common.h" typedef struct stu { char sno[5]; char name[32]; int age; } stu_t; typedef struct stu2 { int sno; char name[32]; int age; } stu2_t; unsigned int hash_str(unsigned int buckets, void *key) { char *sno = (char *)key; unsigned int index = 0; while (*sno) { index = *sno + 4 * index; sno++; } return index % buckets; } unsigned int hash_int(unsigned int buckets, void *key) { int *sno = (int *)key; return (*sno) % buckets; } int main(void) { stu2_t stu_arr[] = { { 1234, "AAAA", 20 }, { 4568, "BBBB", 23 }, { 6729, "AAAA", 19 } }; hash_t *hash = hash_alloc(256, hash_int); int size = sizeof(stu_arr) / sizeof(stu_arr[0]); int i; for (i = 0; i < size; i++) { hash_add_entry(hash, &(stu_arr[i].sno), sizeof(stu_arr[i].sno), &stu_arr[i], sizeof(stu_arr[i])); } int sno = 4568; stu2_t *s = (stu2_t *)hash_lookup_entry(hash, &sno, sizeof(sno)); if (s) { printf("%d %s %d\n", s->sno, s->name, s->age); } else { printf("not found\n"); } sno = 1234; hash_free_entry(hash, &sno, sizeof(sno)); s = (stu2_t *)hash_lookup_entry(hash, &sno, sizeof(sno)); if (s) { printf("%d %s %d\n", s->sno, s->name, s->age); } else { printf("not found\n"); } hash_free(hash); return 0; }输出:
The hash table has allocate.
4568 BBBB 23
not found
The hash table has free.
(二)二次探测再散列
为改善“堆积”问题,减少为完成搜索所需的平均探查次数,可使用二次探测法。
可以证明:当表的长度>buckets为质数并且表的装填因子不超过0.5的时候,新的表项一定可以插入,而且任意一个位置不会被探查两次。
具体代码实现,跟前面讲过的线性探测再散列 差不多,只是探测的方法不同,但使用的数据结构也有点不一样。此外还实现了开裂处理(也就是表的长度要扩充一倍,然后取比他大的最小的一个质数),如果装载因子 a > 1/2; 则建立新表,将旧表内容拷贝过去,所以hash_t 结构体需要再保存一个size 成员,同样的原因,为了将旧表内容拷贝过去,hash_node_t 结构体需要再保存 *key 和 *value 的size。
hash.c
#include "hash.h" #include "common.h" #include <assert.h> typedef enum entry_status { EMPTY, ACTIVE, DELETED } entry_status_t; typedef struct hash_node { enum entry_status status; void *key; unsigned int key_size; //在拷贝进新的哈希表时有用 void *value; unsigned int value_size; //在拷贝进新的哈希表时有用 } hash_node_t; struct hash { unsigned int buckets; unsigned int size; //累加,如果size > buckets / 2 ,则需要开裂建立新表 hashfunc_t hash_func; hash_node_t *nodes; }; unsigned int next_prime(unsigned int n); int is_prime(unsigned int n); unsigned int hash_get_bucket(hash_t *hash, void *key); hash_node_t *hash_get_node_by_key(hash_t *hash, void *key, unsigned int key_size); hash_t *hash_alloc(unsigned int buckets, hashfunc_t hash_func) { hash_t *hash = (hash_t *)malloc(sizeof(hash_t)); //assert(hash != NULL); hash->buckets = buckets; hash->hash_func = hash_func; int size = buckets * sizeof(hash_node_t); hash->nodes = (hash_node_t *)malloc(size); memset(hash->nodes, 0, size); printf("The hash table has allocate.\n"); return hash; } void hash_free(hash_t *hash) { unsigned int buckets = hash->buckets; int i; for (i = 0; i < buckets; i++) { if (hash->nodes[i].status != EMPTY) { free(hash->nodes[i].key); free(hash->nodes[i].value); } } free(hash->nodes); printf("The hash table has free.\n"); } void *hash_lookup_entry(hash_t *hash, void *key, unsigned int key_size) { hash_node_t *node = hash_get_node_by_key(hash, key, key_size); if (node == NULL) { return NULL; } return node->value; } void hash_add_entry(hash_t *hash, void *key, unsigned int key_size, void *value, unsigned int value_size) { if (hash_lookup_entry(hash, key, key_size)) { fprintf(stderr, "duplicate hash key\n"); return; } unsigned int bucket = hash_get_bucket(hash, key); unsigned int i = bucket; unsigned int j = i; int k = 1; int odd = 1; while (hash->nodes[i].status == ACTIVE) { if (odd) { i = j + k * k; odd = 0; // i % hash->buckets; while (i >= hash->buckets) { i -= hash->buckets; } } else { i = j - k * k; odd = 1; while (i < 0) { i += hash->buckets; } ++k; } } hash->nodes[i].status = ACTIVE; if (hash->nodes[i].key) ////释放原来被逻辑删除的项的内存 { free(hash->nodes[i].key); } hash->nodes[i].key = malloc(key_size); hash->nodes[i].key_size = key_size; //保存key_size; memcpy(hash->nodes[i].key, key, key_size); if (hash->nodes[i].value) //释放原来被逻辑删除的项的内存 { free(hash->nodes[i].value); } hash->nodes[i].value = malloc(value_size); hash->nodes[i].value_size = value_size; //保存value_size; memcpy(hash->nodes[i].value, value, value_size); if (++(hash->size) < hash->buckets / 2) return; //在搜索时可以不考虑表装满的情况; //但在插入时必须确保表的装填因子不超过0.5。 //如果超出,必须将表长度扩充一倍,进行表的分裂。 unsigned int old_buckets = hash->buckets; hash->buckets = next_prime(2 * old_buckets); hash_node_t *p = hash->nodes; unsigned int size; hash->size = 0; //从0 开始计算 size = sizeof(hash_node_t) * hash->buckets; hash->nodes = (hash_node_t *)malloc(size); memset(hash->nodes, 0, size); for (i = 0; i < old_buckets; i++) { if (p[i].status == ACTIVE) { hash_add_entry(hash, p[i].key, p[i].key_size, p[i].value, p[i].value_size); } } for (i = 0; i < old_buckets; i++) { // active or deleted if (p[i].key) { free(p[i].key); } if (p[i].value) { free(p[i].value); } } free(p); //释放旧表 } void hash_free_entry(hash_t *hash, void *key, unsigned int key_size) { hash_node_t *node = hash_get_node_by_key(hash, key, key_size); if (node == NULL) return; // 逻辑删除 node->status = DELETED; } unsigned int hash_get_bucket(hash_t *hash, void *key) { unsigned int bucket = hash->hash_func(hash->buckets, key); if (bucket >= hash->buckets) { fprintf(stderr, "bad bucket lookup\n"); exit(EXIT_FAILURE); } return bucket; } hash_node_t *hash_get_node_by_key(hash_t *hash, void *key, unsigned int key_size) { unsigned int bucket = hash_get_bucket(hash, key); unsigned int i = 1; unsigned int pos = bucket; int odd = 1; unsigned int tmp = pos; while (hash->nodes[pos].status != EMPTY && memcmp(key, hash->nodes[pos].key, key_size) != 0) { if (odd) { pos = tmp + i * i; odd = 0; // pos % hash->buckets; while (pos >= hash->buckets) { pos -= hash->buckets; } } else { pos = tmp - i * i; odd = 1; while (pos < 0) { pos += hash->buckets; } i++; } } if (hash->nodes[pos].status == ACTIVE) { return &(hash->nodes[pos]); } // 如果运行到这里,说明pos为空位或者被逻辑删除 // 可以证明,当表的长度hash->buckets为质数且表的装填因子不超过0.5时, // 新的表项 x 一定能够插入,而且任何一个位置不会被探查两次。 // 因此,只要表中至少有一半空的,就不会有表满问题。 return NULL; } unsigned int next_prime(unsigned int n) { // 偶数不是质数 if (n % 2 == 0) { n++; } for (; !is_prime(n); n += 2); // 不是质数,继续求 return n; } int is_prime(unsigned int n) { unsigned int i; for (i = 3; i * i <= n; i += 2) { if (n % i == 0) { // 不是,返回0 return 0; } } // 是,返回1 return 1; }(三)伪随机探测再散列
(四)双散列法
下面是一定数据下各种方式的性能分析:
我们可以得出一般性结论:
处理冲突的方法最好采用链地址法,哈希函数使用除留余数法(其中哈希函数最好与关键码的特征关联性强一些)性能最佳。
标签:
原文地址:http://blog.csdn.net/nk_test/article/details/50569230