标签:
Given an integer matrix, find the length of the longest increasing path. From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed). Example 1: nums = [ [9,9,4], [6,6,8], [2,1,1] ] Return 4 The longest increasing path is [1, 2, 6, 9]. Example 2: nums = [ [3,4,5], [3,2,6], [2,2,1] ] Return 4 The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.
DFS + DP:
use a two dimensional matrix dp[i][j] to store the length of the longest increasing path starting at matrix[i][j]
transferring function is: dp[i][j] = max(dp[i][j], dp[x][y] + 1), where dp[x][y] is its neighbor with matrix[x][y] > matrix[i][j]
1 public class Solution { 2 int[][] dp; 3 int[][] directions = new int[][]{{-1,0},{1,0},{0,-1},{0,1}}; 4 int m; 5 int n; 6 int[][] mx; 7 public int longestIncreasingPath(int[][] matrix) { 8 if (matrix==null || matrix.length==0 || matrix[0].length==0) return 0; 9 m = matrix.length; 10 n = matrix[0].length; 11 dp = new int[m][n]; 12 mx = matrix; 13 int result = 0; 14 for (int i=0; i<m; i++) { 15 for (int j=0; j<n; j++) { 16 dp[i][j] = Integer.MIN_VALUE; 17 } 18 } 19 for (int i=0; i<m; i++) { 20 for (int j=0; j<n; j++) { 21 result = Math.max(result, DFS(i,j)); 22 } 23 } 24 return result; 25 } 26 27 public int DFS(int i, int j) { 28 if (dp[i][j] != Integer.MIN_VALUE) return dp[i][j]; 29 dp[i][j] = 1; 30 for (int[] dir : directions) { 31 int x = i + dir[0]; 32 int y = j + dir[1]; 33 if (x<0 || y<0 || x>=m || y>=n || mx[x][y]<=mx[i][j]) continue; 34 dp[i][j] = Math.max(dp[i][j], DFS(x,y)+1); 35 } 36 return dp[i][j]; 37 } 38 }
Leetcode: Longest Increasing Path in a Matrix
标签:
原文地址:http://www.cnblogs.com/EdwardLiu/p/5156805.html