标签:
lca的做法还是非常明显的。简单粗暴,
只是不是正解。假设树是长链就会跪,直接变成O(n)、、
最后跑的也挺快,出题人还是挺阳光的。。
动态树的解法也是听别人说能ac的。预计就是放在splay上剖分一下,做法还是比較复杂的。,,
来一发lca:
#include <stdio.h> #include <iostream> #include <algorithm> #include <sstream> #include <stdlib.h> #include <string.h> #include <limits.h> #include <string> #include <time.h> #include <math.h> #include <queue> #include <stack> #include <set> #include <map> using namespace std; #define INF 0x3f3f3f3f #define eps 1e-8 #define pi acos(-1.0) typedef long long ll; const int maxn=20010; int head[maxn],tol,dp[maxn],fa[maxn][20],dep[maxn],weight[maxn]; struct Edge{ int next,to; Edge(int _next=0,int _to=0){ next=_next;to=_to; } }edge[10*maxn]; void addedge(int u,int v){ edge[tol]=Edge(head[u],v); head[u]=tol++; } void bfs(int s){ queue<int> q; dep[s]=0,fa[s][0]=s; q.push(s); while(!q.empty()){ int u=q.front(); q.pop(); for(int i=1;i<20;i++)fa[u][i]=fa[fa[u][i-1]][i-1]; for(int i=head[u];i!=-1;i=edge[i].next){ int v=edge[i].to; if(v==fa[u][0])continue; fa[v][0]=u; dep[v]=dep[u]+1; q.push(v); } } } int LCA(int x,int y){ if(dep[x]<dep[y])swap(x,y); for(int i=19;i>=0;i--)if((1<<i)&(dep[x]-dep[y]))x=fa[x][i]; if(x==y)return x; for(int i=19;i>=0;i--)if(fa[x][i]!=fa[y][i])x=fa[x][i],y=fa[y][i]; return fa[x][0]; } void dfs(int u,int pre){ dp[u]=weight[u]; for(int i=head[u];i!=-1;i=edge[i].next){ int v=edge[i].to; if(v==pre)continue; dfs(v,u); dp[u]+=dp[v]; } } int move(int x,int d){ for(int i=19;i>=0;i--) if(d&(1<<i))x=fa[x][i]; return x; } int main() { int T; cin>>T; for(int t=1;t<=T;t++){ int n; scanf("%d",&n); memset(head,-1,sizeof(head));tol=0; for(int i=1;i<n;i++){ int x,y; scanf("%d%d",&x,&y); addedge(x,y); addedge(y,x); } bfs(1); for(int i=1;i<=n;i++)scanf("%d",&weight[i]); dfs(1,-1); printf("Case #%d:\n",t); int Q; scanf("%d",&Q); int root=1; while(Q--){ char op[10]; int x,y; scanf("%s",op); if(op[0]=='R'){ scanf("%d",&x); root=x; } else if(op[0]=='C'){ scanf("%d%d",&x,&y); int dd=x; while(1){ dp[dd]+=y-weight[x]; if(dd==1)break; dd=fa[dd][0]; } weight[x] = y; } else { scanf("%d",&x); if(x==root)printf("%d\n",dp[1]); else { int lca=LCA(x,root); if(lca==x){ int p=move(root,dep[root]-dep[x]-1); //cout<<"han "<<x<<" "<<root<<" "<<dep[root]-dep[x]-1<<endl;cout<<"p="<<p<<endl; printf("%d\n",dp[1]-dp[p]); } else printf("%d\n",dp[x]); } } } } return 0; }
bit的神牛教的。,
详见:点击打开链接
HDU 4836 The Query on the Tree lca || 欧拉序列 || 动态树
标签:
原文地址:http://www.cnblogs.com/yxwkf/p/5164149.html