标签:素数
http://poj.org/problem?id=2689
题意:给出一个大区间[L,U],分别求出该区间内连续的相差最小和相差最大的素数对。
因为L<U<=2147483647,直接筛素数是不行的,数组就开不了。但是可以根据素数筛的原理。我们先筛出sqrt(2147483647)以内的素数,然后拿这些素数去筛[L,U]之间的素数,即两次素数筛。但是L,U还是很大,但U-L<=1000000,所以进行区间平移,将[L,U]平移为[0,U-L],就能用数组放得下。
#include <stdio.h> #include <iostream> #include <map> #include <set> #include <stack> #include <vector> #include <math.h> #include <string.h> #include <queue> #include <string> #include <stdlib.h> #include <algorithm> #define LL long long #define _LL __int64 #define eps 1e-12 #define PI acos(-1.0) using namespace std; const int maxn = 47000; int prime[maxn]; bool flag[maxn]; bool a[1000010]; LL L,U; void get_prime() { memset(flag,true,sizeof(flag)); prime[0] = 0; flag[0] = flag[1] = false; for(int i = 2; i < maxn; i++) { if(flag[i]) prime[++prime[0]] = i; for(int j = 1; j <= prime[0]&&prime[j]*i < maxn; j++) { flag[prime[j]*i] = false; if(i%prime[j] == 0) break; } } } //用已筛选的素数去筛[L,U]之间的素数,区间平移为[0,U-L]; void solve(LL L, LL u) { memset(a,true,sizeof(a)); if(L == 1)//特殊判断L为1的时候,映射为0,但1不是素数,所以a[0]为false。 a[0] = false; for(int i = 1; i <= prime[0]; i++) { if(prime[i]*prime[i] > U) break; int l = L/prime[i]; if(L%prime[i]!=0) l++; if(l == 1) l = 2; // l=1时,L为素数,不能把L本身筛掉 int u = U/prime[i]; for(int j = l; j <= u; j++) { LL t = (long long)j*prime[i]; a[t-L] = false; } } } int main() { get_prime(); while(~scanf("%lld %lld",&L,&U)) { solve(L,U); int Min = 1000010,Max = -1; int ans[4]; int x,y; x = y = -1; for(int i = 0; i <= U-L; i++) { if(a[i] == true) { x = y; y = i; if(x == -1) continue; int t = y-x; if(t < Min) { ans[0] = x; ans[1] = y; Min = t; } if(t > Max) { ans[2] = x; ans[3] = y; Max = t; } } } if(x != -1 && y != -1) { printf("%lld,%lld are closest, %lld,%lld are most distant.\n",ans[0]+L,ans[1]+L,ans[2]+L,ans[3]+L); } else printf("There are no adjacent primes.\n"); } return 0; }
poj 2689 Prime Distance(大区间筛素数)
标签:素数
原文地址:http://blog.csdn.net/u013081425/article/details/38078041