码迷,mamicode.com
首页 > 其他好文 > 详细

Spark IMF传奇行动第22课:RDD的依赖关系彻底解密

时间:2016-01-30 13:30:22      阅读:204      评论:0      收藏:0      [点我收藏+]

标签:

版权声明:本文为博主原创文章,未经博主允许不得转载。作者:HaiziS

 

昨晚听了王家林老师的Spark IMF传奇行动第22课:RDD的依赖关系彻底解密,笔记如下:

1,窄依赖是指每个父RDD的一个Partition最多被子RDD的一个Partition所使用,例如map、filter、union等都会产生窄依赖;

2宽依赖是指一个父RDD的Partition会被多个子RDD的Partition所使用,例如groupByKey、reduceByKey、sortByKey等操作都会产生宽依赖

表面上是数据在流动,实质上算子在流动,数据不动代码动

 def combineByKeyWithClassTag[C](
    createCombiner: V => C,
    mergeValue: (C, V) => C,
    mergeCombiners: (C, C) => C,
    partitioner: Partitioner,
    mapSideCombine: Boolean = true,
    serializer: Serializer = null)(implicit ct: ClassTag[C]): RDD[(K, C)] = self.withScope {
 其中mapSideCombine: Boolean = true,表明了map端的combine操作为true,减少网络IO

 

后续课程可以参照新浪微博 王家林_DT大数据梦工厂:http://weibo.com/ilovepains

王家林  中国Spark第一人,微信公共号DT_Spark

 

转发请写明出处。

Spark IMF传奇行动第22课:RDD的依赖关系彻底解密

标签:

原文地址:http://www.cnblogs.com/haitianS/p/5170791.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!