标签:
UDTF(User-Defined Table-Generating Functions)用来解决输入一行输出多行(one-to-many maping)的需求。
编写自己的UDTF:
1.继承org.apache.hadoop.hive.ql.udf.generic.GenericUDTF。
2.实现initialize(),process(),close()三个方法。
3.UDTF首先会调用initialize()方法,此方法返回UDTF的返回行的信息(返回个数,类型)。
4.初始化完成后会调用process()方法,对传入的参数进行处理,可以通过forward()方法把结果返回。
5.最后调用close()对需要清理的方法进行清理。
示例:使用UDTF对"Key:Value"这种字符串进行切分,返回结果为Key,Value两个字段。
- import java.util.ArrayList;
-
- import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
- import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
- import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
- import org.apache.hadoop.hive.ql.metadata.HiveException;
- import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
- import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
- import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
- import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
-
- public class ExplodeMap extends GenericUDTF{
-
- @Override
- public void close() throws HiveException {
-
- }
-
- @Override
- public StructObjectInspector initialize(ObjectInspector[] args)
- throws UDFArgumentException {
- if (args.length != 1) {
- throw new UDFArgumentLengthException("ExplodeMap takes only one argument");
- }
- if (args[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {
- throw new UDFArgumentException("ExplodeMap takes string as a parameter");
- }
-
- ArrayList<String> fieldNames = new ArrayList<String>();
- ArrayList<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>();
- fieldNames.add("col1");
- fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
- fieldNames.add("col2");
- fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
-
- return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames,fieldOIs);
- }
-
- @Override
- public void process(Object[] args) throws HiveException {
- String input = args[0].toString();
- String[] test = input.split(";");
- for(int i=0; i<test.length; i++) {
- try {
- String[] result = test[i].split(":");
- forward(result);
- } catch (Exception e) {
- continue;
- }
- }
- }
- }
1.打包发送到服务器。
2.添加到Hive环境中:
- hive (hive)> add jar /usr/local/src/udtf.jar<span style="font-family: Arial, Helvetica, sans-serif;">;</span>
- Added /usr/local/src/udtf.jar to class path
- Added resource: /usr/local/src/udtf.jar
3.创建临时函数:
- hive (hive)> create temporary function explode_map as ‘com.lixue.udtf.ExplodeMap‘;
- OK
- Time taken: 0.0080 seconds
4.查询(UDTF有两种使用方式,一种是直接放到select后面,另外一种是和lateral view一起使用):
- hive (hive)> select explode_map(‘name:lavimer;age:23‘) as (col1,col2) from employees;
- OK
- col1 col2
- name lavimer
- age 23
- name lavimer
- age 23
- name lavimer
- age 23
注:不可以添加其他字段使用,如下:
- select a, explode_map(properties) as (col1,col2) from src
不可以嵌套调用:
- select explode_map(explode_map(properties)) from src
不可以和group by/cluster by/distribute by/sort by一起使用:
- select explode_map(properties) as (col1,col2) from src group by col1, col2
可以和lateral view一起使用:
- hive (hive)> select user.id,employees.col1,employees.col2 from user lateral view explode_map(‘name:lavimer,age:23‘) employees as col1,col2;
- OK
- id col1 col2
- 1 name lavimer
- 1 age 23
- 2 name lavimer
- 2 age 23
- 3 name lavimer
- 3 age 23
注:此方法更为方便使用。执行过程相当于单独执行了两次抽取,然后union到一个表里。
UDTF
标签:
原文地址:http://www.cnblogs.com/thinkpad/p/5173643.html