码迷,mamicode.com
首页 > 其他好文 > 详细

UVA 10312 - Expression Bracketing(数论+Catalan数)

时间:2016-02-04 18:56:42      阅读:229      评论:0      收藏:0      [点我收藏+]

标签:

题目链接:10312 - Expression Bracketing

题意:有n个x,要求分括号,推断非二叉表达式的个数。
思路:二叉表达式的计算方法就等于是Catalan数的,那么仅仅要计算出总数,用总数减去二叉表达式个数。得到的就是非二叉表达式的个数。

那么计算方法是什么呢。

看题目中的图,对于n = 4的情况,能够分为这几种情况来讨论:
四个1。 一个2两个1,一个3一个1。一个4。相应的情况数为1。3。 2。 1。
答案为f(1)^4 + 3 * f(2) * f(1)^2 + f(3) * f(1) + f(4)。
一种做法是把n去分解然后计算。可是显然这是不可行的,n最大为26,情况数太多了。
然后找题解,发现这个竟然有公式,这个式子叫SuperCatalan数。

然后也有递推出来的解。设dp[n][2]。n表示还有n个子节点未分配。2表示0为最多分配n - 1个点,1为最多分配n个点,这样能保证子树都至少有两个节点。这样就是总情况了,直接用记忆化搜下去就可以

代码:

公式解:

#include <stdio.h>
#include <string.h>

int n;
long long Catalan[30], SuperCatalan[30];

int main() {
	Catalan[1] = Catalan[2] = 1;
	for (int i = 3; i <= 26; i++) {
		Catalan[i] = Catalan[i - 1] * (4 * i - 6) / i;
 	}
 	SuperCatalan[1] = SuperCatalan[2] = 1;
 	for (int i = 3; i <= 26; i++) {
		SuperCatalan[i] = (3 * (2 * i - 3) * SuperCatalan[i - 1] - (i - 3) * SuperCatalan[i - 2]) / i;
	}
	while (~scanf("%d", &n)) {
		printf("%lld\n", SuperCatalan[n] - Catalan[n]);
 	}
	return 0;
}

递推解:

#include <stdio.h>
#include <string.h>

int n;
long long Catalan[30], dp[30][2];

long long dfs(int n, int flag) {
	long long &ans = dp[n][flag];
	if (~ans) return ans;
	if (n <= 1) return ans = 1;
	ans = 0;
	for (int i = 1; i < n + flag; i++)
		ans += dfs(i, 0) *	dfs(n - i, 1);
	return ans;
}

int main() {
	Catalan[1] = Catalan[2] = 1;
	for (int i = 3; i <= 26; i++) {
		Catalan[i] = Catalan[i - 1] * (4 * i - 6) / i;
 	}
	while (~scanf("%d", &n)) {
		memset(dp, -1, sizeof(dp));
		printf("%lld\n", dfs(n, 0) - Catalan[n]);
 	}
	return 0;
}


UVA 10312 - Expression Bracketing(数论+Catalan数)

标签:

原文地址:http://www.cnblogs.com/lcchuguo/p/5182150.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!