标签:
BZOJ 1002
高精度 + 递推
f[1] = 1; f[2] = 5; f[i] = f[i - 1] * 3 - f[i - 2] + 2;
SPOJ 104
裸 + 不用Mod
1 #include <cstdio> 2 #include <cstring> 3 #include <cstdlib> 4 #include <algorithm> 5 #include <iostream> 6 7 using namespace std; 8 9 const int rad = 10; 10 11 int n; 12 13 struct BigInt { 14 int v[1005]; 15 int len; 16 17 BigInt() { 18 memset(v, 0, sizeof v); 19 len = 0; 20 } 21 22 friend BigInt operator + (BigInt a, BigInt b) { 23 int tmp = max(a.len, b.len); 24 25 for(int i = 1; i <= tmp; ++ i) { 26 a.v[i] += b.v[i]; 27 if(a.v[i] >= rad) { 28 a.v[i + 1] += a.v[i] / rad; 29 a.v[i] %= rad; 30 } 31 } 32 while(a.v[tmp + 1]) tmp ++; 33 a.len = tmp; 34 35 return a; 36 } 37 38 friend BigInt operator * (BigInt a, BigInt b) { 39 BigInt c; 40 int tmp = a.len + b.len; 41 42 for(int i = 1; i <= a.len; ++ i) { 43 for(int j = 1; j <= b.len; ++ j) { 44 c.v[i + j - 1] += a.v[i] * b.v[j]; 45 } 46 } 47 for(int i = 1; i <= tmp; ++ i) { 48 if(c.v[i] >= rad) { 49 c.v[i + 1] += c.v[i] / rad; 50 c.v[i] %= rad; 51 } 52 if(c.v[i]) c.len = i; 53 } 54 55 return c; 56 } 57 58 friend BigInt operator * (BigInt a, int k) { 59 for(int i = 1; i <= a.len; ++ i) { 60 a.v[i] *= k; 61 } 62 for(int i = 1; i <= a.len; ++ i) { 63 a.v[i + 1] += a.v[i] / rad; 64 a.v[i] %= rad; 65 } 66 if(a.v[a.len + 1]) a.len ++; 67 return a; 68 } 69 70 friend BigInt operator - (BigInt a, BigInt b) { 71 for(int i = 1; i <= a.len; ++ i) { 72 a.v[i] -= b.v[i]; 73 if(a.v[i] < 0) { 74 a.v[i + 1] -= 1; 75 a.v[i] += rad; 76 } 77 } 78 while(a.v[a.len] == 0)a.len --; 79 return a; 80 } 81 void getint(int k) { 82 while(k) { 83 v[++ len] = k % 10; 84 k /= 10; 85 } 86 } 87 88 void print() { 89 for(int i = len; i >= 1; -- i) { 90 printf("%d", v[i]); 91 } 92 } 93 }f[105], cst; 94 95 void Input() { 96 scanf("%d", &n); 97 } 98 99 void Solve() { 100 f[1].getint(1); 101 f[2].getint(5); 102 cst.getint(2); 103 for(int i = 3; i <= n; ++ i) { 104 f[i] = f[i - 1] * 3 - f[i - 2] + cst; 105 } 106 } 107 108 void Output() { 109 f[n].print(); 110 } 111 112 int main() { 113 Input(); 114 Solve(); 115 Output(); 116 117 return 0; 118 }
1 #include <cstdio> 2 #include <iostream> 3 #include <cstring> 4 #include <cstdlib> 5 #include <algorithm> 6 7 using namespace std; 8 9 typedef long long ll; 10 const int N = 15; 11 12 ll ans; 13 int n, m; 14 ll degree[N][N], G[N][N], self[N][N]; 15 16 ll det(ll a[N][N]) { 17 ll res = 1; 18 19 for(int i = 1; i < n; ++ i) { 20 for(int j = i + 1; j < n; ++ j) { 21 while(a[j][i]) { 22 ll t = a[i][i] / a[j][i]; 23 24 for(int k = i; k < n; ++ k) 25 a[i][k] = (a[i][k] - a[j][k] * t); 26 for(int k = i; k < n; ++ k) 27 swap(a[i][k], a[j][k]); 28 res = -res; 29 } 30 } 31 if(a[i][i] == 0) return 0; 32 res = 1LL * res * a[i][i]; 33 } 34 return res; 35 } 36 37 void Input() { 38 int x, y; 39 40 memset(self, 0, sizeof self); 41 memset(degree, 0, sizeof degree); 42 43 scanf("%d%d", &n, &m); 44 for(int i = 1; i <= m; ++ i) { 45 scanf("%d%d", &x, &y); 46 degree[x][y] ++; 47 degree[y][x] ++; 48 self[x][x] ++; self[y][y] ++; 49 } 50 for(int i = 1; i <= n; ++ i) { 51 for(int j = 1; j <= n; ++ j) { 52 G[i][j] = self[i][j] - degree[i][j]; 53 } 54 } 55 } 56 57 void Solve() { 58 ans = det(G); 59 } 60 61 void Output() { 62 printf("%lld\n", ans); 63 } 64 65 int main() { 66 int t; 67 68 scanf("%d", &t); 69 70 while(t --) { 71 Input(); 72 Solve(); 73 Output(); 74 } 75 76 return 0; 77 }
BZOJ 1002 + SPOJ 104 基尔霍夫矩阵 + 一个递推式。
标签:
原文地址:http://www.cnblogs.com/sxprovence/p/5187294.html