标签:
原题链接在这里:https://leetcode.com/problems/longest-increasing-path-in-a-matrix/
Given an integer matrix, find the length of the longest increasing path.
From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).
Example 1:
nums = [
[9,9,4],
[6,6,8],
[2,1,1]
]
Return 4
The longest increasing path is [1, 2, 6, 9]
.
Example 2:
nums = [
[3,4,5],
[3,2,6],
[2,2,1]
]
Return 4
The longest increasing path is [3, 4, 5, 6]
. Moving diagonally is not allowed.
dp[i][j] 表示 当前i, j 位置能都到的最大距离。
dp[i][j] 是通过 dfs 来选的,初始dp[i][j] 都是0, 终止条件是若是走到了一个不是0的位置,那么直接返回dp[x][y]. 可以避免重复计算. 若是dp[x][y]已经有值,说明这个点4个方向的最大值已经找到, 找到dp[x][y]的路径必定是比matrix[x][y]小的,直接返回dp[x][y] 再加上 1 就是之前位置的最大延展长度了。
若是当前位置是0, 就从上下左右四个方向dfs, 若是过了边界或者新位置matrix[x][j] <= 老位置matrix[i][j], 直接跳过continue.
不然len = 1 + dfs. 取四个方向最大的len作为dp[i][j].
Time Complexity: 对于每一个点都做dfs, dfs O(m*n). 所以一共 O(m*n * m*n) = O(m^2 * n^2).
Space: O(m*n).用了dp array.
AC Java:
1 public class Solution { 2 final int [][] fourD = {{-1, 0}, {1,0}, {0,-1}, {0,1}}; 3 4 public int longestIncreasingPath(int[][] matrix) { 5 if(matrix == null || matrix.length == 0 || matrix[0].length == 0){ 6 return 0; 7 } 8 int max = 1; 9 int m = matrix.length; 10 int n = matrix[0].length; 11 int [][] dp = new int[m][n]; 12 for(int i = 0; i<m; i++){ 13 for(int j = 0; j<n; j++){ 14 dp[i][j] = dfs(matrix, i, j, m, n, dp); 15 max = Math.max(max, dp[i][j]); 16 } 17 } 18 return max; 19 } 20 21 private int dfs(int [][] matrix, int i, int j, int m, int n, int [][] dp){ 22 if(dp[i][j] != 0){ 23 return dp[i][j]; 24 } 25 int max = 1; 26 for(int k = 0; k<fourD.length; k++){ 27 int x = i+fourD[k][0]; 28 int y = j+fourD[k][1]; 29 if(x<0 || x>=m || y<0 || y>=n || matrix[x][y] <= matrix[i][j]){ 30 continue; 31 } 32 int len = 1 + dfs(matrix, x, y, m, n, dp); 33 max = Math.max(max, len); 34 } 35 dp[i][j] = max; 36 return dp[i][j]; 37 } 38 }
LeetCode Longest Increasing Path in a Matrix
标签:
原文地址:http://www.cnblogs.com/Dylan-Java-NYC/p/5202602.html