标签:
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2038
莫队算法可以解决一类不修改、离线查询问题。而这题可以用莫队来做。
*我是看这个论文学会的:(链接~)
其实莫队就是一种优化的暴力,只是把查询都离线预先按照规则去排序,然后依次暴力处理这些询问。
有两种做法,目前只会写分段解决。先把1~n分成sqrt(n) , u = sqrt(n) , m个查询先按照第几个块排序,再按照 R排序。
代码如下:
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <algorithm> 5 #include <cmath> 6 7 using namespace std; 8 const int MAXN = 5e4 + 5; 9 typedef long long LL; 10 int a[MAXN] , u , cont[MAXN]; 11 struct que { 12 int l , r , id; 13 }q[MAXN]; 14 struct data { 15 LL x , y; 16 }ans[MAXN]; 17 18 LL gcd(LL x , LL y) { 19 if(!y) 20 return x; 21 return gcd(y , x % y); 22 } 23 24 bool cmp(que x , que y) { 25 if(x.l / u == y.l / u) 26 return x.r < y.r; 27 return x.l / u < y.l / u; 28 } 29 30 inline LL f(LL x) { 31 return x * x; 32 } 33 34 int main() 35 { 36 int n , m; 37 while(~scanf("%d %d" , &n , &m)) { 38 for(int i = 1 ; i <= n ; i++) { 39 scanf("%d" , a + i); 40 } 41 for(int i = 1 ; i <= m ; i++) { 42 scanf("%d %d" , &q[i].l , &q[i].r); 43 q[i].id = i; 44 } 45 u = sqrt(n); 46 sort(q + 1 , q + m + 1 , cmp); 47 int L = 1 , R = 0; 48 LL temp = 0; 49 memset(cont , 0 , sizeof(cont)); 50 for(int i = 1 ; i <= m ; i++) { 51 while(L < q[i].l) { 52 temp -= f(cont[a[L]]); 53 cont[a[L]]--; 54 temp += f(cont[a[L]]); 55 L++; 56 } 57 while(L > q[i].l) { //前面的还没算 58 L--; 59 temp -= f(cont[a[L]]); 60 cont[a[L]]++; 61 temp += f(cont[a[L]]); 62 } 63 while(R > q[i].r) { 64 temp -= f(cont[a[R]]); 65 cont[a[R]]--; 66 temp += f(cont[a[R]]); 67 R--; 68 } 69 while(R < q[i].r) { 70 R++; 71 temp -= f(cont[a[R]]); 72 cont[a[R]]++; 73 temp += f(cont[a[R]]); 74 } 75 ans[q[i].id].x = temp - (R - L + 1); 76 ans[q[i].id].y = (LL)(R - L + 1) * (R - L); 77 } 78 for(int i = 1 ; i <= m ; i++) { 79 if(!ans[i].x || !ans[i].y) { 80 printf("0/1\n"); 81 } 82 else { 83 temp = gcd(ans[i].x , ans[i].y); 84 printf("%lld/%lld\n" , ans[i].x / temp , ans[i].y / temp); 85 } 86 } 87 } 88 }
bzoj - 2038: [2009国家集训队]小Z的袜子(hose)
标签:
原文地址:http://www.cnblogs.com/Recoder/p/5208648.html