码迷,mamicode.com
首页 > 其他好文 > 详细

哈密顿绕行世界问题(dfs+记录路径)

时间:2016-02-23 11:11:03      阅读:167      评论:0      收藏:0      [点我收藏+]

标签:

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2181

哈密顿绕行世界问题

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2362    Accepted Submission(s): 1490


Problem Description
一个规则的实心十二面体,它的 20个顶点标出世界著名的20个城市,你从一个城市出发经过每个城市刚好一次后回到出发的城市。 
 

 

Input
前20行的第i行有3个数,表示与第i个城市相邻的3个城市.第20行以后每行有1个数m,m<=20,m>=1.m=0退出.
 

 

Output
输出从第m个城市出发经过每个城市1次又回到m的所有路线,如有多条路线,按字典序输出,每行1条路线.每行首先输出是第几条路线.然后个一个: 后列出经过的城市.参看Sample output
 

 

Sample Input
2 5 20 1 3 12 2 4 10 3 5 8 1 4 6 5 7 19 6 8 17 4 7 9 8 10 16 3 9 11 10 12 15 2 11 13 12 14 20 13 15 18 11 14 16 9 15 17 7 16 18 14 17 19 6 18 20 1 13 19 5 0
 

 

Sample Output
1: 5 1 2 3 4 8 7 17 18 14 15 16 9 10 11 12 13 20 19 6 5 2: 5 1 2 3 4 8 9 10 11 12 13 20 19 18 14 15 16 17 7 6 5 3: 5 1 2 3 10 9 16 17 18 14 15 11 12 13 20 19 6 7 8 4 5 4: 5 1 2 3 10 11 12 13 20 19 6 7 17 18 14 15 16 9 8 4 5 5: 5 1 2 12 11 10 3 4 8 9 16 15 14 13 20 19 18 17 7 6 5 6: 5 1 2 12 11 15 14 13 20 19 18 17 16 9 10 3 4 8 7 6 5 7: 5 1 2 12 11 15 16 9 10 3 4 8 7 17 18 14 13 20 19 6 5 8: 5 1 2 12 11 15 16 17 18 14 13 20 19 6 7 8 9 10 3 4 5 9: 5 1 2 12 13 20 19 6 7 8 9 16 17 18 14 15 11 10 3 4 5 10: 5 1 2 12 13 20 19 18 14 15 11 10 3 4 8 9 16 17 7 6 5 11: 5 1 20 13 12 2 3 4 8 7 17 16 9 10 11 15 14 18 19 6 5 12: 5 1 20 13 12 2 3 10 11 15 14 18 19 6 7 17 16 9 8 4 5 13: 5 1 20 13 14 15 11 12 2 3 10 9 16 17 18 19 6 7 8 4 5 14: 5 1 20 13 14 15 16 9 10 11 12 2 3 4 8 7 17 18 19 6 5 15: 5 1 20 13 14 15 16 17 18 19 6 7 8 9 10 11 12 2 3 4 5 16: 5 1 20 13 14 18 19 6 7 17 16 15 11 12 2 3 10 9 8 4 5 17: 5 1 20 19 6 7 8 9 10 11 15 16 17 18 14 13 12 2 3 4 5 18: 5 1 20 19 6 7 17 18 14 13 12 2 3 10 11 15 16 9 8 4 5 19: 5 1 20 19 18 14 13 12 2 3 4 8 9 10 11 15 16 17 7 6 5 20: 5 1 20 19 18 17 16 9 10 11 15 14 13 12 2 3 4 8 7 6 5 21: 5 4 3 2 1 20 13 12 11 10 9 8 7 17 16 15 14 18 19 6 5 22: 5 4 3 2 1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 23: 5 4 3 2 12 11 10 9 8 7 6 19 18 17 16 15 14 13 20 1 5 24: 5 4 3 2 12 13 14 18 17 16 15 11 10 9 8 7 6 19 20 1 5 25: 5 4 3 10 9 8 7 6 19 20 13 14 18 17 16 15 11 12 2 1 5 26: 5 4 3 10 9 8 7 17 16 15 11 12 2 1 20 13 14 18 19 6 5 27: 5 4 3 10 11 12 2 1 20 13 14 15 16 9 8 7 17 18 19 6 5 28: 5 4 3 10 11 15 14 13 12 2 1 20 19 18 17 16 9 8 7 6 5 29: 5 4 3 10 11 15 14 18 17 16 9 8 7 6 19 20 13 12 2 1 5 30: 5 4 3 10 11 15 16 9 8 7 17 18 14 13 12 2 1 20 19 6 5 31: 5 4 8 7 6 19 18 17 16 9 10 3 2 12 11 15 14 13 20 1 5 32: 5 4 8 7 6 19 20 13 12 11 15 14 18 17 16 9 10 3 2 1 5 33: 5 4 8 7 17 16 9 10 3 2 1 20 13 12 11 15 14 18 19 6 5 34: 5 4 8 7 17 18 14 13 12 11 15 16 9 10 3 2 1 20 19 6 5 35: 5 4 8 9 10 3 2 1 20 19 18 14 13 12 11 15 16 17 7 6 5 36: 5 4 8 9 10 3 2 12 11 15 16 17 7 6 19 18 14 13 20 1 5 37: 5 4 8 9 16 15 11 10 3 2 12 13 14 18 17 7 6 19 20 1 5 38: 5 4 8 9 16 15 14 13 12 11 10 3 2 1 20 19 18 17 7 6 5 39: 5 4 8 9 16 15 14 18 17 7 6 19 20 13 12 11 10 3 2 1 5 40: 5 4 8 9 16 17 7 6 19 18 14 15 11 10 3 2 12 13 20 1 5 41: 5 6 7 8 4 3 2 12 13 14 15 11 10 9 16 17 18 19 20 1 5 42: 5 6 7 8 4 3 10 9 16 17 18 19 20 13 14 15 11 12 2 1 5 43: 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 44: 5 6 7 8 9 16 17 18 19 20 1 2 12 13 14 15 11 10 3 4 5 45: 5 6 7 17 16 9 8 4 3 10 11 15 14 18 19 20 13 12 2 1 5 46: 5 6 7 17 16 15 11 10 9 8 4 3 2 12 13 14 18 19 20 1 5 47: 5 6 7 17 16 15 11 12 13 14 18 19 20 1 2 3 10 9 8 4 5 48: 5 6 7 17 16 15 14 18 19 20 13 12 11 10 9 8 4 3 2 1 5 49: 5 6 7 17 18 19 20 1 2 3 10 11 12 13 14 15 16 9 8 4 5 50: 5 6 7 17 18 19 20 13 14 15 16 9 8 4 3 10 11 12 2 1 5 51: 5 6 19 18 14 13 20 1 2 12 11 15 16 17 7 8 9 10 3 4 5 52: 5 6 19 18 14 15 11 10 9 16 17 7 8 4 3 2 12 13 20 1 5 53: 5 6 19 18 14 15 11 12 13 20 1 2 3 10 9 16 17 7 8 4 5 54: 5 6 19 18 14 15 16 17 7 8 9 10 11 12 13 20 1 2 3 4 5 55: 5 6 19 18 17 7 8 4 3 2 12 11 10 9 16 15 14 13 20 1 5 56: 5 6 19 18 17 7 8 9 16 15 14 13 20 1 2 12 11 10 3 4 5 57: 5 6 19 20 1 2 3 10 9 16 15 11 12 13 14 18 17 7 8 4 5 58: 5 6 19 20 1 2 12 13 14 18 17 7 8 9 16 15 11 10 3 4 5 59: 5 6 19 20 13 12 11 10 9 16 15 14 18 17 7 8 4 3 2 1 5 60: 5 6 19 20 13 14 18 17 7 8 4 3 10 9 16 15 11 12 2 1 5
题解:dfs记录路径的时候要巧妙的利用题意,这个题中给了固定的点的个数,那么统计的时候直接for(int i = 0; i < 20; i++)即可
记录20个点的父亲就可以,如果不知道路径上到底有多上个点,那么就通过其他的特性来判断结束从父节点倒退的终止条件
再说字典序,用矩阵存储边就成了自动利用字典序的最好的方法
 1 #include<cstdio>
 2 #include<cstring>
 3 #include<string>
 4 #include<iostream>
 5 #include<algorithm>
 6 using namespace std;
 7 #define N 25
 8 int mp[N][N];
 9 bool vis[N];
10 int fa[N];
11 int ans[N];
12 void dfs(int tm, int s, int sum, int &cnt)
13 {
14     if( sum==20 ){
15             if(!mp[s][tm]) return;
16         printf("%d:  ",cnt);
17         int f = s;
18         //int c = 1;
19         for(int i = 1; i< 20; i++){
20             ans[i] = fa[f];
21             f = fa[f];
22         }
23         for(int i = 19; i > 0; i--){
24             printf("%d ",ans[i]);
25         }
26         printf("%d %d\n",s,tm);
27         cnt = cnt+1;
28         return;
29     }
30     for(int i = 1; i <= 20; i++){
31         if(!vis[i]&&mp[s][i]){
32                // puts("haha");
33             vis[i] = 1;
34             fa[i] = s;
35             dfs(tm,i,sum+1,cnt);
36             vis[i] = 0;
37         }
38     }
39     return;
40 }
41 int main()
42 {
43     memset(mp,0,sizeof(mp));
44     for(int i = 1; i <= 20; i++)
45     {
46         int x, y, z;
47         scanf("%d%d%d",&x,&y,&z);
48         mp[i][x] = mp[x][i] = 1;
49         mp[i][y] = mp[y][i] = 1;
50         mp[i][z] = mp[z][i] = 1;
51     }
52     int s;
53     while(~scanf("%d",&s))
54     {
55         if(s==0) return 0;
56         memset(vis,0,sizeof(vis));
57         memset(fa,0,sizeof(fa));
58         memset(ans,0,sizeof(ans));
59         int cnt = 1;
60         vis[s] = 1;
61         fa[s] = s;
62         dfs(s,s,1,cnt);
63     }
64     return 0;
65 }

 

哈密顿绕行世界问题(dfs+记录路径)

标签:

原文地址:http://www.cnblogs.com/shanyr/p/5209056.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!