码迷,mamicode.com
首页 > 其他好文 > 详细

codeforces 446A DZY Loves Sequences

时间:2016-02-29 14:25:29      阅读:119      评论:0      收藏:0      [点我收藏+]

标签:

codeforces   446A   DZY Loves Sequences         题目链接:http://codeforces.com/problemset/problem/446/A

题目大意:给出一个定长为n的数列a,问改动当中一个数后。可能出现的最长严格上升子段的长度是多少。

题目分析:先不考虑“改动当中一个数”这个条件,这样问题就简单多了,从前到后遍历计数就可以(定义一个数组inc[]长度同a,初始化全部点为1,遍历假设当前点a[i]>a[i-1]就置inc[i]=inc[i-1]+1)。那么加上改动一个数这个条件,问题变成什么样了呢?原数列里可能会有一些离散的严格上升子段,它们有的能够接续成一段(当两个严格上升子段中间仅仅隔着一个数&&前一段的段末小于后一段的段头-1时,我们能够把隔在中间的那个数改动使其符合要求),或许不存在这种两段,那么答案就是最长的一段的长度+1(假设数列本身就是严格上升的,答案就是n)。

    总之就是找最长,其他情况好说,两段接续怎么搞呢?先用刚才提到的inc数组记下全部从前向后找的结果,能够在遍历时直接得到第i-1个点所在子段的最大长度。那么第i+1个点就须要反其道而行,再定义一个dec数组,从后向前遍历计数,两数组配合求得接续情况的最大值(可能说的不够清楚。详參代码)。

code:

#include<stdio.h>
#include<string.h>
int max(int a,int b,int c)
{
	if(c>=a&&c>=b)return c;
	return a>b?a:b;
}
int main()
{
	int i,j,n,a[100020],inc[100020],dec[100020],ans=0;
	scanf("%d",&n);
	if(n==1||n==2)
	{
		printf("%d\n",n);
		return 0;
	}
	for(i=0;i<n;i++)
	{
		scanf("%d",a+i);
	}
	inc[0]=dec[n-1]=1;
	for(i=1;i<n;i++)
	{
		inc[i]=a[i]>a[i-1]?inc[i-1]+1:1;
		dec[n-i-1]=a[n-i-1]<a[n-i]?dec[n-i]+1:1;
	}
	for(i=1;i<n-1;i++)
	{
		int temp=-1;
		if(a[i-1]<a[i+1]-1&&(inc[i]==1||dec[i]==1))temp=inc[i-1]+dec[i+1]+1;
		else if(a[i-1]<a[i])temp=inc[i-1]+2;
		else if(a[i]<a[i+1])temp=dec[i+1]+2;
		else temp=max(inc[i-1]+1,dec[i+1]+1,0);
		//if(temp>ans&&temp>inc[i])printf("temp==%d\n",temp);
		ans=max(temp,ans,inc[i]);
	}
	ans=max(ans,inc[n-2]+1,dec[1]+1);
	//因为上面的循环是从第二个跑到倒数第二个,所以最后须要这样收一下尾 
	printf("%d\n",ans);
	return 0;
}
/*
5676345
5676789
5678345
6
7 2 3 1 4 5
inc
1 1 2 1 2 3
dec
1 2 1 3 2 1
*/

PS:题目仅仅要求改一个数。假设变成改m个数该怎么办呢?我想应该在遍历时记下最优改动点,一遍遍历结束后真的去改动数组a、inc、dec的值,然后再去遍历。这样时间复杂度会骤增为原来的m倍,或许须要更优化的数组存储方法…

PSS:我这种方法不是DP,只是题目上打了个标签dp。期待DP做法…







codeforces 446A DZY Loves Sequences

标签:

原文地址:http://www.cnblogs.com/gcczhongduan/p/5227229.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!