标签:
The goal is both to offer a quick reference for new and old users and to provide also a set of exercices for those who teach. If you remember having asked or answered a (short) problem, you can send a pull request. The format is:
#. Find indices of non-zero elements from [1,2,0,0,4,0] .. code:: python # Author: Somebody print(np.nonzero([1,2,0,0,4,0]))
Here is what the page looks like so far: http://www.labri.fr/perso/nrougier/teaching/numpy.100/index.html
Repository is at: https://github.com/rougier/numpy-100
Thanks to Michiaki Ariga, there is now a Julia version.
Import the numpy package under the name np
(★☆☆☆☆)
import numpy as np
Print the numpy version and the configuration (★☆☆☆☆)
print(np.__version__)
np.__config__.show()
Create a null vector of size 10 (★☆☆☆☆)
Z = np.zeros(10)
print(Z)
How to get the documentation of the numpy add function from the command line ? (★☆☆☆☆)
python -c "import numpy; numpy.info(numpy.add)"
Create a null vector of size 10 but the fifth value which is 1 (★☆☆☆☆)
Z = np.zeros(10)
Z[4] = 1
print(Z)
Create a vector with values ranging from 10 to 49 (★☆☆☆☆)
Z = np.arange(10,50)
print(Z)
Reverse a vector (first element becomes last) (★☆☆☆☆)
Z = np.arange(50)
Z = Z[::-1]
Create a 3x3 matrix with values ranging from 0 to 8 (★☆☆☆☆)
Z = np.arange(9).reshape(3,3)
print(Z)
Find indices of non-zero elements from [1,2,0,0,4,0] (★☆☆☆☆)
nz = np.nonzero([1,2,0,0,4,0])
print(nz)
Create a 3x3 identity matrix (★☆☆☆☆)
Z = np.eye(3)
print(Z)
Create a 3x3x3 array with random values (★☆☆☆☆)
Z = np.random.random((3,3,3))
print(Z)
Create a 10x10 array with random values and find the minimum and maximum values (★☆☆☆☆)
Z = np.random.random((10,10))
Zmin, Zmax = Z.min(), Z.max()
print(Zmin, Zmax)
Create a random vector of size 30 and find the mean value (★☆☆☆☆)
Z = np.random.random(30)
m = Z.mean()
print(m)
Create a 5x5 matrix with values 1,2,3,4 just below the diagonal (★★☆☆☆)
Z = np.diag(1+np.arange(4),k=-1)
print(Z)
Create a 8x8 matrix and fill it with a checkerboard pattern (★★☆☆☆)
Z = np.zeros((8,8),dtype=int)
Z[1::2,::2] = 1
Z[::2,1::2] = 1
print(Z)
Create a checkerboard 8x8 matrix using the tile function (★★☆☆☆)
Z = np.tile( np.array([[0,1],[1,0]]), (4,4))
print(Z)
Normalize a 5x5 random matrix (★★☆☆☆)
Z = np.random.random((5,5))
Zmax, Zmin = Z.max(), Z.min()
Z = (Z - Zmin)/(Zmax - Zmin)
print(Z)
Multiply a 5x3 matrix by a 3x2 matrix (real matrix product) (★★☆☆☆)
Z = np.dot(np.ones((5,3)), np.ones((3,2)))
print(Z)
Create a 5x5 matrix with row values ranging from 0 to 4 (★★☆☆☆)
Z = np.zeros((5,5))
Z += np.arange(5)
print(Z)
Create a vector of size 10 with values ranging from 0 to 1, both excluded (★★☆☆☆)
Z = np.linspace(0,1,12,endpoint=True)[1:-1]
print(Z)
Create a random vector of size 10 and sort it (★★☆☆☆)
Z = np.random.random(10)
Z.sort()
print(Z)
Consider two random array A anb B, check if they are equal (★★☆☆☆)
A = np.random.randint(0,2,5)
B = np.random.randint(0,2,5)
equal = np.allclose(A,B)
print(equal)
Make an array immutable (read-only) (★★☆☆☆)
Z = np.zeros(10)
Z.flags.writeable = False
Z[0] = 1
Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates (★★☆☆☆)
Z = np.random.random((10,2))
X,Y = Z[:,0], Z[:,1]
R = np.sqrt(X**2+Y**2)
T = np.arctan2(Y,X)
print(R)
print(T)
Create random vector of size 10 and replace the maximum value by 0 (★★☆☆☆)
Z = np.random.random(10)
Z[Z.argmax()] = 0
print(Z)
Create a structured array with x
and y
coordinates covering the [0,1]x[0,1] area (★★☆☆☆)
Z = np.zeros((10,10), [(‘x‘,float),(‘y‘,float)])
Z[‘x‘], Z[‘y‘] = np.meshgrid(np.linspace(0,1,10),
np.linspace(0,1,10))
print(Z)
Print the minimum and maximum representable value for each numpy scalar type (★★☆☆☆)
for dtype in [np.int8, np.int32, np.int64]:
print(np.iinfo(dtype).min)
print(np.iinfo(dtype).max)
for dtype in [np.float32, np.float64]:
print(np.finfo(dtype).min)
print(np.finfo(dtype).max)
print(np.finfo(dtype).eps)
Create a structured array representing a position (x,y) and a color (r,g,b) (★★☆☆☆)
Z = np.zeros(10, [ (‘position‘, [ (‘x‘, float, 1),
(‘y‘, float, 1)]),
(‘color‘, [ (‘r‘, float, 1),
(‘g‘, float, 1),
(‘b‘, float, 1)])])
print(Z)
Consider a random vector with shape (100,2) representing coordinates, find point by point distances (★★☆☆☆)
Z = np.random.random((10,2))
X,Y = np.atleast_2d(Z[:,0]), np.atleast_2d(Z[:,1])
D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2)
print(D)
# Much faster with scipy
import scipy
# Thanks Gavin Heverly-Coulson (#issue 1)
import scipy.spatial
Z = np.random.random((10,2))
D = scipy.spatial.distance.cdist(Z,Z)
print(D)
Consider the following file:
1,2,3,4,5 6,,,7,8 ,,9,10,11
How to read it ? (★★☆☆☆)
Z = np.genfromtxt("missing.dat", delimiter=",")
Generate a generic 2D Gaussian-like array (★★☆☆☆)
X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10))
D = np.sqrt(X*X+Y*Y)
sigma, mu = 1.0, 0.0
G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) )
print(G)
How to randomly place p elements in a 2D array ? (★★★☆☆)
# Author: Divakar n = 10 p = 3 Z = np.zeros((n,n)) np.put(Z, np.random.choice(range(n*n), p, replace=False),1)
Subtract the mean of each row of a matrix (★★★☆☆)
# Author: Warren Weckesser
X = np.random.rand(5, 10)
# Recent versions of numpy
Y = X - X.mean(axis=1, keepdims=True)
# Older versions of numpy
Y = X - X.mean(axis=1).reshape(-1, 1)
How to I sort an array by the nth column ? (★★★☆☆)
# Author: Steve Tjoa
Z = np.random.randint(0,10,(3,3))
print(Z)
print(Z[Z[:,1].argsort()])
How to tell if a given 2D array has null columns ? (★★★☆☆)
# Author: Warren Weckesser
Z = np.random.randint(0,3,(3,10))
print((~Z.any(axis=0)).any())
Find the nearest value from a given value in an array (★★★☆☆)
Z = np.random.uniform(0,1,10)
z = 0.5
m = Z.flat[np.abs(Z - z).argmin()]
print(m)
Consider a generator function that generates 10 integers and use it to build an array (★★★☆☆)
def generate():
for x in xrange(10):
yield x
Z = np.fromiter(generate(),dtype=float,count=-1)
print(Z)
Consider a given vector, how to add 1 to each element indexed by a second vector (be careful with repeated indices) ? (★★★☆☆)
# Author: Brett Olsen
Z = np.ones(10)
I = np.random.randint(0,len(Z),20)
Z += np.bincount(I, minlength=len(Z))
print(Z)
How to accumulate elements of a vector (X) to an array (F) based on an index list (I) ? (★★★☆☆)
# Author: Alan G Isaac
X = [1,2,3,4,5,6]
I = [1,3,9,3,4,1]
F = np.bincount(I,X)
print(F)
Considering a (w,h,3) image of (dtype=ubyte), compute the number of unique colors (★★★☆☆)
# Author: Nadav Horesh
w,h = 16,16
I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)
F = I[...,0]*256*256 + I[...,1]*256 +I[...,2]
n = len(np.unique(F))
print(np.unique(I))
Considering a four dimensions array, how to get sum over the last two axis at once ? (★★★☆☆)
A = np.random.randint(0,10,(3,4,3,4))
sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
print(sum)
Considering a one-dimensional vector D, how to compute means of subsets of D using a vector S of same size describing subset indices ? (★★★☆☆)
# Author: Jaime Fernández del Río
D = np.random.uniform(0,1,100)
S = np.random.randint(0,10,100)
D_sums = np.bincount(S, weights=D)
D_counts = np.bincount(S)
D_means = D_sums / D_counts
print(D_means)
How to get the diagonal of a dot product ? (★★★☆☆)
# Author: Mathieu Blondel
# Slow version
np.diag(np.dot(A, B))
# Fast version
np.sum(A * B.T, axis=1)
# Faster version
np.einsum("ij,ji->i", A, B).
Consider the vector [1, 2, 3, 4, 5], how to build a new vector with 3 consecutive zeros interleaved between each value ? (★★★☆☆)
# Author: Warren Weckesser
Z = np.array([1,2,3,4,5])
nz = 3
Z0 = np.zeros(len(Z) + (len(Z)-1)*(nz))
Z0[::nz+1] = Z
print(Z0)
Consider an array of dimension (5,5,3), how to mulitply it by an array with dimensions (5,5) ? (★★★☆☆)
A = np.ones((5,5,3))
B = 2*np.ones((5,5))
print(A * B[:,:,None])
How to swap two rows of an array ? (★★★☆☆)
# Author: Eelco Hoogendoorn
A = np.arange(25).reshape(5,5)
A[[0,1]] = A[[1,0]]
print(A)
Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles (★★★☆☆)
# Author: Nicolas P. Rougier
faces = np.random.randint(0,100,(10,3))
F = np.roll(faces.repeat(2,axis=1),-1,axis=1)
F = F.reshape(len(F)*3,2)
F = np.sort(F,axis=1)
G = F.view( dtype=[(‘p0‘,F.dtype),(‘p1‘,F.dtype)] )
G = np.unique(G)
print(G)
Given an array C that is a bincount, how to produce an array A such that np.bincount(A) == C ? (★★★☆☆)
# Author: Jaime Fernández del Río
C = np.bincount([1,1,2,3,4,4,6])
A = np.repeat(np.arange(len(C)), C)
print(A)
How to compute averages using a sliding window over an array ? (★★★☆☆)
# Author: Jaime Fernández del Río
def moving_average(a, n=3) :
ret = np.cumsum(a, dtype=float)
ret[n:] = ret[n:] - ret[:-n]
return ret[n - 1:] / n
Z = np.arange(20)
print(moving_average(Z, n=3))
Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be (Z[-3],Z[-2],Z[-1]) (★★★☆☆)
# Author: Joe Kington / Erik Rigtorp
from numpy.lib import stride_tricks
def rolling(a, window):
shape = (a.size - window + 1, window)
strides = (a.itemsize, a.itemsize)
return stride_tricks.as_strided(a, shape=shape, strides=strides)
Z = rolling(np.arange(10), 3)
print(Z)
How to negate a boolean, or to change the sign of a float inplace ? (★★★☆☆)
# Author: Nathaniel J. Smith
Z = np.random.randint(0,2,100)
np.logical_not(arr, out=arr)
Z = np.random.uniform(-1.0,1.0,100)
np.negative(arr, out=arr)
Consider 2 sets of points P0,P1 describing lines (2d) and a point p, how to compute distance from p to each line i (P0[i],P1[i]) ? (★★★☆☆)
def distance(P0, P1, p):
T = P1 - P0
L = (T**2).sum(axis=1)
U = -((P0[:,0]-p[...,0])*T[:,0] + (P0[:,1]-p[...,1])*T[:,1]) / L
U = U.reshape(len(U),1)
D = P0 + U*T - p
return np.sqrt((D**2).sum(axis=1))
P0 = np.random.uniform(-10,10,(10,2))
P1 = np.random.uniform(-10,10,(10,2))
p = np.random.uniform(-10,10,( 1,2))
print(distance(P0, P1, p))
Consider 2 sets of points P0,P1 describing lines (2d) and a set of points P, how to compute distance from each point j (P[j]) to each line i (P0[i],P1[i]) ? (★★★☆☆)
# Author: Italmassov Kuanysh
# based on distance function from previous question
P0 = np.random.uniform(-10, 10, (10,2))
P1 = np.random.uniform(-10,10,(10,2))
p = np.random.uniform(-10, 10, (10,2))
print np.array([distance(P0,P1,p_i) for p_i in p])
Consider an arbitrary array, write a function that extract a subpart with a fixed shape and centered on a given element (pad with a fill
value when necessary) (★★★☆☆)
# Author: Nicolas Rougier
Z = np.random.randint(0,10,(10,10))
shape = (5,5)
fill = 0
position = (1,1)
R = np.ones(shape, dtype=Z.dtype)*fill
P = np.array(list(position)).astype(int)
Rs = np.array(list(R.shape)).astype(int)
Zs = np.array(list(Z.shape)).astype(int)
R_start = np.zeros((len(shape),)).astype(int)
R_stop = np.array(list(shape)).astype(int)
Z_start = (P-Rs//2)
Z_stop = (P+Rs//2)+Rs%2
R_start = (R_start - np.minimum(Z_start,0)).tolist()
Z_start = (np.maximum(Z_start,0)).tolist()
R_stop = np.maximum(R_start, (R_stop - np.maximum(Z_stop-Zs,0))).tolist()
Z_stop = (np.minimum(Z_stop,Zs)).tolist()
r = [slice(start,stop) for start,stop in zip(R_start,R_stop)]
z = [slice(start,stop) for start,stop in zip(Z_start,Z_stop)]
R[r] = Z[z]
print(Z)
print(R)
Consider an array Z = [1,2,3,4,5,6,7,8,9,10,11,12,13,14], how to generate an array R = [[1,2,3,4], [2,3,4,5], [3,4,5,6], ..., [11,12,13,14]] ? (★★★☆☆)
# Author: Stefan van der Walt
Z = np.arange(1,15,dtype=uint32)
R = stride_tricks.as_strided(Z,(11,4),(4,4))
print(R)
Compute a matrix rank (★★★☆☆)
# Author: Stefan van der Walt
Z = np.random.uniform(0,1,(10,10))
U, S, V = np.linalg.svd(Z) # Singular Value Decomposition
rank = np.sum(S > 1e-10)
Extract all the contiguous 3x3 blocks from a random 10x10 matrix (★★★☆☆)
# Author: Chris Barker
Z = np.random.randint(0,5,(10,10))
n = 3
i = 1 + (Z.shape[0]-3)
j = 1 + (Z.shape[1]-3)
C = stride_tricks.as_strided(Z, shape=(i, j, n, n), strides=Z.strides + Z.strides)
print(C)
Create a 2D array subclass such that Z[i,j] == Z[j,i] (★★★☆☆)
# Author: Eric O. Lebigot
# Note: only works for 2d array and value setting using indices
class Symetric(np.ndarray):
def __setitem__(self, (i,j), value):
super(Symetric, self).__setitem__((i,j), value)
super(Symetric, self).__setitem__((j,i), value)
def symetric(Z):
return np.asarray(Z + Z.T - np.diag(Z.diagonal())).view(Symetric)
S = symetric(np.random.randint(0,10,(5,5)))
S[2,3] = 42
print(S)
Consider a set of p matrices wich shape (n,n) and a set of p vectors with shape (n,1). How to compute the sum of of the p matrix products at once ? (result has shape (n,1)) (★★★☆☆)
# Author: Stefan van der Walt
p, n = 10, 20
M = np.ones((p,n,n))
V = np.ones((p,n,1))
S = np.tensordot(M, V, axes=[[0, 2], [0, 1]])
print(S)
# It works, because:
# M is (p,n,n)
# V is (p,n,1)
# Thus, summing over the paired axes 0 and 0 (of M and V independently),
# and 2 and 1, to remain with a (n,1) vector.
Consider a 16x16 array, how to get the block-sum (block size is 4x4) ? (★★★☆☆)
# Author: Robert Kern
Z = np.ones(16,16)
k = 4
S = np.add.reduceat(np.add.reduceat(Z, np.arange(0, Z.shape[0], k), axis=0),
np.arange(0, Z.shape[1], k), axis=1)
How to implement the Game of Life using numpy arrays ? (★★★☆☆)
# Author: Nicolas Rougier
def iterate(Z):
# Count neighbours
N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] +
Z[1:-1,0:-2] + Z[1:-1,2:] +
Z[2: ,0:-2] + Z[2: ,1:-1] + Z[2: ,2:])
# Apply rules
birth = (N==3) & (Z[1:-1,1:-1]==0)
survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1)
Z[...] = 0
Z[1:-1,1:-1][birth | survive] = 1
return Z
Z = np.random.randint(0,2,(50,50))
for i in range(100): Z = iterate(Z)
Given an arbitrary number of vectors, build the cartesian product (every combinations of every item) (★★★☆☆)
# Author: Stefan Van der Walt
def cartesian(arrays):
arrays = [np.asarray(a) for a in arrays]
shape = (len(x) for x in arrays)
ix = np.indices(shape, dtype=int)
ix = ix.reshape(len(arrays), -1).T
for n, arr in enumerate(arrays):
ix[:, n] = arrays[n][ix[:, n]]
return ix
print (cartesian(([1, 2, 3], [4, 5], [6, 7])))
How to create a record array from a regular array ? (★★★☆☆)
Z = np.array([("Hello", 2.5, 3),
("World", 3.6, 2)])
R = np.core.records.fromarrays(Z.T,
names=‘col1, col2, col3‘,
formats = ‘S8, f8, i8‘)
Comsider a large vector Z, compute Z to the power of 3 using 3 different methods (★★★☆☆)
Author: Ryan G.
x = np.random.rand(5e7)
%timeit np.power(x,3)
1 loops, best of 3: 574 ms per loop
%timeit x*x*x
1 loops, best of 3: 429 ms per loop
%timeit np.einsum(‘i,i,i->i‘,x,x,x)
1 loops, best of 3: 244 ms per loop
Consider two arrays A and B of shape (8,3) and (2,2). How to find rows of A that contain elements of each row of B regardless of the order of the elements in B ? (★★★★☆)
# Author: Gabe Schwartz
A = np.random.randint(0,5,(8,3))
B = np.random.randint(0,5,(2,2))
C = (A[..., np.newaxis, np.newaxis] == B)
rows = (C.sum(axis=(1,2,3)) >= B.shape[1]).nonzero()[0]
print(rows)
Considering a 10x3 matrix, extract rows with unequal values (e.g. [2,2,3]) (★★★★☆)
# Author: Robert Kern
Z = np.random.randint(0,5,(10,3))
E = np.logical_and.reduce(Z[:,1:] == Z[:,:-1], axis=1)
U = Z[~E]
print(Z)
print(U)
Convert a vector of ints into a matrix binary representation (★★★★☆)
# Author: Warren Weckesser
I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128])
B = ((I.reshape(-1,1) & (2**np.arange(8))) != 0).astype(int)
print(B[:,::-1])
# Author: Daniel T. McDonald
I = np.array([0, 1, 2, 3, 15, 16, 32, 64, 128], dtype=np.uint8)
print(np.unpackbits(I[:, np.newaxis], axis=1))
Given a two dimensional array, how to extract unique rows ? (★★★★☆)
Note
See stackoverflow for explanations.
# Author: Jaime Fernández del Río
Z = np.random.randint(0,2,(6,3))
T = np.ascontiguousarray(Z).view(np.dtype((np.void, Z.dtype.itemsize * Z.shape[1])))
_, idx = np.unique(T, return_index=True)
uZ = Z[idx]
print(uZ)
Considering 2 vectors A & B, write the einsum equivalent of inner, outer, sum, and mul function (★★★★☆)
# Author: Alex Riley
# Make sure to read: http://ajcr.net/Basic-guide-to-einsum/
np.einsum(‘i->‘, A) # np.sum(A)
np.einsum(‘i,i->i‘, A, B) # A * B
np.einsum(‘i,i‘, A, B) # np.inner(A, B)
np.einsum(‘i,j‘, A, B) # np.outer(A, B)
Considering a path described by two vectors (X,Y), how to sample it using equidistant samples (★★★★★) ?
# Author: Bas Swinckels
phi = np.arange(0, 10*np.pi, 0.1)
a = 1
x = a*phi*np.cos(phi)
y = a*phi*np.sin(phi)
dr = (np.diff(x)**2 + np.diff(y)**2)**.5 # segment lengths
r = np.zeros_like(x)
r[1:] = np.cumsum(dr) # integrate path
r_int = np.linspace(0, r.max(), 200) # regular spaced path
x_int = np.interp(r_int, r, x) # integrate path
y_int = np.interp(r_int, r, y)
标签:
原文地址:http://www.cnblogs.com/anyview/p/5228842.html