标签:
这里使用ID3算法构造决策树,引用http://my.oschina.net/dfsj66011/blog/343647的内容。
outlook | temperature | humidity | windy | play |
sunny | hot | high | false | no |
sunny | hot | high | true | no |
overcast | hot | high | false | yes |
rainy | mild | high | false | yes |
rainy | cool | normal | false | yes |
rainy | cool | normal | true | no |
overcast | cool | normal | true | yes |
sunny | mild | high | false | no |
sunny | cool | normal | false | yes |
rainy | mild | normal | false | yes |
sunny | mild | normal | true | yes |
overcast | mild | high | true | yes |
overcast | hot | normal | false | yes |
rainy | mild | high | true | no |
(可以看到在决策树构建中,特征的取值需要时标称的)
现在我们使用ID3归纳决策树的方法来求解该问题。
熵是无序性(或不确定性)的度量指标。假如事件A的全概率划分是(A1,A2,...,An),每部分发生的概率是(p1,p2,...,pn),那信息熵定义为:
通常以2为底数,所以信息熵的单位是bit。
补充两个对数去处公式:
构造树的基本想法是随着树深度的增加,节点的熵迅速地降低。熵降低的速度越快越好,这样我们有望得到一棵高度最矮的决策树。
在没有给定任何天气信息时,根据历史数据,我们只知道新的一天打球的概率是9/14,不打的概率是5/14。此时的熵为:
属性有4个:outlook,temperature,humidity,windy。我们首先要决定哪个属性作树的根节点。
对每项指标分别统计:在不同的取值下打球和不打球的次数。
下面我们计算当已知变量outlook的值时,信息熵为多少。
outlook=sunny时,2/5的概率打球,3/5的概率不打球。entropy=0.971
outlook=overcast时,entropy=0
outlook=rainy时,entropy=0.971
而根据历史统计数据,outlook取值为sunny、overcast、rainy的概率分别是5/14、4/14、5/14,所以当已知变量 outlook的值时,信息熵为:5/14 × 0.971 + 4/14 × 0 + 5/14 × 0.971 = 0.693
这样的话系统熵就从0.940下降到了0.693,信息增溢gain(outlook)为0.940-0.693=0.247
同样可以计算出gain(temperature)=0.029,gain(humidity)=0.152,gain(windy)=0.048。
gain(outlook)最大(即outlook在第一步使系统的信息熵下降得最快),所以决策树的根节点就取outlook。
标签:
原文地址:http://www.cnblogs.com/litian0605/p/5230504.html