标签:
According to the Wikipedia‘s article: "The Game of Life, also known simply as Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970."
Given a board with m by n cells, each cell has an initial state live (1) or dead (0). Each cell interacts with its eight neighbors (horizontal, vertical, diagonal) using the following four rules (taken from the above Wikipedia article):
Write a function to compute the next state (after one update) of the board given its current state.
Follow up:
由于题目中要求所有点的状态需要一次性发生改变,而且不用额外的空间,这是本题的最大难点。
既然需要“就地解决”,我们不妨分析一下borad的特性:board上的元素有两种状态,生(1)和死(0)。这两种状态存在了一个int型里面。所以我们可以有效利用除最低位的其它位,去保存更新后的状态,这样就不需要有额外的空间了。
具体而言,我们可以用最低位表示当前状态,次低位表示更新后状态:
class Solution { public: void gameOfLife(vector<vector<int>>& board) { int height = board.size(); int width = height ? board[0].size() : 0; if (!height || !width) { return; } for (int i = 0; i < height; ++i) { for (int j = 0; j < width; ++j) { int life = getlives(board, height - 1, width - 1, i, j); if (board[i][j] == 1 && (life == 2 || life == 3)) { board[i][j] = 3; } else if (board[i][j] == 0 && life == 3) { board[i][j] = 2; } } } for (int i = 0; i < height; ++i) { for (int j = 0; j < width; ++j) { board[i][j] >>= 1; } } } int getlives(vector<vector<int>>& board, int height, int width, int i, int j) { int res = 0; for (int h = max(i-1, 0); h <= min(i+1, height); ++h) { for (int w = max(j-1, 0); w <= min(j+1, width); ++w) { res += board[h][w] & 1; } } res -= board[i][j] & 1; return res; } };
标签:
原文地址:http://www.cnblogs.com/jdneo/p/5236373.html