码迷,mamicode.com
首页 > 其他好文 > 详细

最小二乘法学习(分享自其他博主)

时间:2016-03-03 13:02:36      阅读:137      评论:0      收藏:0      [点我收藏+]

标签:

二. 最小二乘法

   我们以最简单的一元线性模型来解释最小二乘法。什么是一元线性模型呢? 监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机 等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一 元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对 于三维空间线性是一个平面,对于多维空间线性是一个超平面...

   对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn)。对于平面中的这n个点,可以使用无数条曲线来拟合。要求样本回归函数尽可能好地拟合这组值。综合起来看,这条直线处于样本数据的中心 位置最合理。 选择最佳拟合曲线的标准可以确定为:使总的拟合误差(即总残差)达到最小。有以下三个标准可以选择:

        (1)用“残差和最小”确定直线位置是一个途径。但很快发现计算“残差和”存在相互抵消的问题。
        (2)用“残差绝对值和最小”确定直线位置也是一个途径。但绝对值的计算比较麻烦。
        (3)最小二乘法的原则是以“残差平方和最小”确定直线位置。用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。这种方法对异常值非常敏感。

  最常用的是普通最小二乘法( Ordinary  Least Square,OLS):所选择的回归模型应该使所有观察值的残差平方和达到最小。(Q为残差平方和)- 即采用平方损失函数。

  样本回归模型:

                  技术分享                   其中ei为样本(Xi, Yi)的误差

   平方损失函数:

                      技术分享

   则通过Q最小确定这条直线,即确定技术分享,以技术分享为变量,把它们看作是Q的函数,就变成了一个求极值的问题,可以通过求导数得到。求Q对两个待估参数的偏导数:

                   技术分享    

    根据数学知识我们知道,函数的极值点为偏导为0的点。

    解得:

                   技术分享

 

这就是最小二乘法的解法,就是求得平方损失函数的极值点。

 

四. 最小二乘法与梯度下降法

   最小二乘法跟梯度下降法都是通过求导来求损失函数的最小值,那它们有什么区别呢。

   相同


  1.本质相同:两种方法都是在给定已知数据(independent & dependent variables)的前提下对dependent variables算出出一个一般性的估值函数。然后对给定新数据的dependent variables进行估算。
  2.目标相同:都是在已知数据的框架内,使得估算值与实际值的总平方差尽量更小(事实上未必一定要使用平方,在之后的关于梯度上升的博文中,是采用logistic回归),估算值与实际值的总平方差的公式为:

                             技术分享

   其中技术分享为第i组数据的independent variable,技术分享为第i组数据的dependent variable,技术分享为系数向量。


   不同
  1.实现方法和结果不同:最小二乘法是直接对技术分享求导找出全局最小,是非迭代法。而梯度下降法是一种迭代法,先给定一个技术分享,然后向技术分享下降最快的方向调整技术分享,在若干次迭代之后找到局部最小。梯度下降法的缺点是到最小点的时候收敛速度变慢,并且对初始点的选择极为敏感,其改进大多是在这两方面下功夫。

 

最小二乘法学习(分享自其他博主)

标签:

原文地址:http://www.cnblogs.com/litian0605/p/5238045.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!