标签:
卷积神经网络(CNN)的基础介绍见http://blog.csdn.net/fengbingchun/article/details/50529500,这里主要以代码实现为主。
CNN是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。
以MNIST作为数据库,仿照LeNet-5和tiny-cnn( http://blog.csdn.net/fengbingchun/article/details/50573841 ) 设计一个简单的7层CNN结构如下:
输入层Input:神经元数量32*32=1024;
C1层:卷积窗大小5*5,输出特征图数量6,卷积窗种类6,输出特征图大小28*28,可训练参数(权值+阈值(偏置))5*5*6+6=150+6,神经元数量28*28*6=4704;
S2层:卷积窗大小2*2,输出下采样图数量6,卷积窗种类6,输出下采样图大小14*14,可训练参数1*6+6=6+6,神经元数量14*14*6=1176;
C3层:卷积窗大小5*5,输出特征图数量16,卷积窗种类6*16=96,输出特征图大小10*10,可训练参数5*5*(6*16)+16=2400+16,神经元数量10*10*16=1600;
S4层:卷积窗大小2*2,输出下采样图数量16,卷积窗种类16,输出下采样图大小5*5,可训练参数1*16+16=16+16,神经元数量5*5*16=400;
C5层:卷积窗大小5*5,输出特征图数量120,卷积窗种类16*120=1920,输出特征图大小1*1,可训练参数5*5*(16*120)+120=48000+120,神经元数量1*1*120=120;
输出层Output:卷积窗大小1*1,输出特征图数量10,卷积窗种类120*10=1200,输出特征图大小1*1,可训练参数1*(120*10)+10=1200+10,神经元数量1*1*10=10。
下面对实现执行过程进行描述说明:
1. 从MNIST数据库中分别获取训练样本和测试样本数据:
(1)、原有MNIST库中图像大小为28*28,这里缩放为32*32,数据值范围为[-1,1],扩充值均取-1;总共60000个32*32训练样本,10000个32*32测试样本;
(2)、输出层有10个输出节点,在训练阶段,对应位置的节点值设为0.8,其它节点设为-0.8.
2. 初始化权值和阈值(偏置):权值就是卷积图像,每一个特征图上的神经元共享相同的权值和阈值,特征图的数量等于阈值的个数
(1)、权值采用uniform rand的方法初始化;
(2)、阈值均初始化为0.
3. 前向传播:根据权值和阈值,主要计算每层神经元的值
(1)、输入层:每次输入一个32*32数据。
(2)、C1层:分别用每一个5*5的卷积图像去乘以32*32的图像,获得一个28*28的图像,即对应位置相加再求和,stride长度为1;一共6个5*5的卷积图像,然后对每一个神经元加上一个阈值,最后再通过tanh激活函数对每一神经元进行运算得到最终每一个神经元的结果。
(3)、S2层:对C1中6个28*28的特征图生成6个14*14的下采样图,相邻四个神经元分别进行相加求和,然后乘以一个权值,再求均值即除以4,然后再加上一个阈值,最后再通过tanh激活函数对每一神经元进行运算得到最终每一个神经元的结果。
(4)、C3层:由S2中的6个14*14下采样图生成16个10*10特征图,对于生成的每一个10*10的特征图,是由6个5*5的卷积图像去乘以6个14*14的下采样图,然后对应位置相加求和,然后对每一个神经元加上一个阈值,最后再通过tanh激活函数对每一神经元进行运算得到最终每一个神经元的结果。
(5)、S4层:由C3中16个10*10的特征图生成16个5*5下采样图,相邻四个神经元分别进行相加求和,然后乘以一个权值,再求均值即除以4,然后再加上一个阈值,最后再通过tanh激活函数对每一神经元进行运算得到最终每一个神经元的结果。
(6)、C5层:由S4中16个5*5下采样图生成120个1*1特征图,对于生成的每一个1*1的特征图,是由16个5*5的卷积图像去乘以16个5*5的下采用图,然后相加求和,然后对每一个神经元加上一个阈值,最后再通过tanh激活函数对每一神经元进行运算得到最终每一个神经元的结果。
(7)、输出层:即全连接层,输出层中的每一个神经元均是由C5层中的120个神经元乘以相对应的权值,然后相加求和;然后对每一个神经元加上一个阈值,最后再通过tanh激活函数对每一神经元进行运算得到最终每一个神经元的结果。
4. 反向传播:主要计算每层神经元、权值和阈值的误差,以用来更新权值和阈值
(1)、输出层:计算输出层神经元误差;通过mse损失函数的导数函数和tanh激活函数的导数函数来计算输出层神经元误差。
(2)、C5层:计算C5层神经元误差、输出层权值误差、输出层阈值误差;通过输出层神经元误差乘以输出层权值,求和,结果再乘以C5层神经元的tanh激活函数的导数,获得C5层每一个神经元误差;通过输出层神经元误差乘以C5层神经元获得输出层权值误差;输出层误差即为输出层阈值误差。
(3)、S4层:计算S4层神经元误差、C5层权值误差、C5层阈值误差;通过C5层权值乘以C5层神经元误差,求和,结果再乘以S4层神经元的tanh激活函数的导数,获得S4层每一个神经元误差;通过S4层神经元乘以C5层神经元误差,求和,获得C5层权值误差;C5层神经元误差即为C5层阈值误差。
(4)、C3层:计算C3层神经元误差、S4层权值误差、S4层阈值误差;
(5)、S2层:计算S2层神经元误差、C3层权值误差、C3层阈值误差;
(6)、C1层:计算C1层神经元误差、S2层权值误差、S2层阈值误差;
(7)、输入层:计算C1层权值误差、C1层阈值误差.
代码文件:
CNN.hpp:
#ifndef _CNN_HPP_ #define _CNN_HPP_ namespace ANN { #define width_image_input_CNN 32 //归一化图像宽 #define height_image_input_CNN 32 //归一化图像高 #define width_image_C1_CNN 28 #define height_image_C1_CNN 28 #define width_image_S2_CNN 14 #define height_image_S2_CNN 14 #define width_image_C3_CNN 10 #define height_image_C3_CNN 10 #define width_image_S4_CNN 5 #define height_image_S4_CNN 5 #define width_image_C5_CNN 1 #define height_image_C5_CNN 1 #define width_image_output_CNN 1 #define height_image_output_CNN 1 #define width_kernel_conv_CNN 5 //卷积核大小 #define height_kernel_conv_CNN 5 #define width_kernel_pooling_CNN 2 #define height_kernel_pooling_CNN 2 #define size_pooling_CNN 2 #define num_map_input_CNN 1 //输入层map个数 #define num_map_C1_CNN 6 //C1层map个数 #define num_map_S2_CNN 6 //S2层map个数 #define num_map_C3_CNN 16 //C3层map个数 #define num_map_S4_CNN 16 //S4层map个数 #define num_map_C5_CNN 120 //C5层map个数 #define num_map_output_CNN 10 //输出层map个数 #define num_patterns_train_CNN 60000 //训练模式对数(总数) #define num_patterns_test_CNN 10000 //测试模式对数(总数) #define num_epochs_CNN 100 //最大迭代次数 #define accuracy_rate_CNN 0.97 //要求达到的准确率 #define learning_rate_CNN 0.01 //学习率 #define eps_CNN 1e-8 #define len_weight_C1_CNN 150 //C1层权值数,5*5*6=150 #define len_bias_C1_CNN 6 //C1层阈值数,6 #define len_weight_S2_CNN 6 //S2层权值数,1*6=6 #define len_bias_S2_CNN 6 //S2层阈值数,6 #define len_weight_C3_CNN 2400 //C3层权值数,5*5*6*16 #define len_bias_C3_CNN 16 //C3层阈值数,16 #define len_weight_S4_CNN 16 //S4层权值数,1*16=16 #define len_bias_S4_CNN 16 //S4层阈值数,16 #define len_weight_C5_CNN 48000 //C5层权值数,5*5*16*120=48000 #define len_bias_C5_CNN 120 //C5层阈值数,120 #define len_weight_output_CNN 1200 //输出层权值数,120*10=1200 #define len_bias_output_CNN 10 //输出层阈值数,10 #define num_neuron_input_CNN 1024 //输入层神经元数,32*32=1024 #define num_neuron_C1_CNN 4704 //C1层神经元数,28*28*6=4704 #define num_neuron_S2_CNN 1176 //S2层神经元数,14*14*6=1176 #define num_neuron_C3_CNN 1600 //C3层神经元数,10*10*16=1600 #define num_neuron_S4_CNN 400 //S4层神经元数,5*5*16=400 #define num_neuron_C5_CNN 120 //C5层神经元数,1*120=120 #define num_neuron_output_CNN 10 //输出层神经元数,1*10=10 class CNN { public: CNN(); ~CNN(); void init(); //初始化,分配空间 bool train(); //训练 int predict(const unsigned char* data, int width, int height); //预测 bool readModelFile(const char* name); //读取已训练好的BP model protected: typedef std::vector<std::pair<int, int> > wi_connections; typedef std::vector<std::pair<int, int> > wo_connections; typedef std::vector<std::pair<int, int> > io_connections; void release(); //释放申请的空间 bool saveModelFile(const char* name); //将训练好的model保存起来,包括各层的节点数,权值和阈值 bool initWeightThreshold(); //初始化,产生[-1, 1]之间的随机小数 bool getSrcData(); //读取MNIST数据 float test(); //训练完一次计算一次准确率 float activation_function_tanh(float x); //激活函数:tanh float activation_function_tanh_derivative(float x); //激活函数tanh的导数 float activation_function_identity(float x); float activation_function_identity_derivative(float x); float loss_function_mse(float y, float t); //损失函数:mean squared error float loss_function_mse_derivative(float y, float t); void loss_function_gradient(const float* y, const float* t, float* dst, int len); float dot_product(const float* s1, const float* s2, int len); //点乘 bool muladd(const float* src, float c, int len, float* dst); //dst[i] += c * src[i] void init_variable(float* val, float c, int len); bool uniform_rand(float* src, int len, float min, float max); float uniform_rand(float min, float max); int get_index(int x, int y, int channel, int width, int height, int depth); void calc_out2wi(int width_in, int height_in, int width_out, int height_out, int depth_out, std::vector<wi_connections>& out2wi); void calc_out2bias(int width, int height, int depth, std::vector<int>& out2bias); void calc_in2wo(int width_in, int height_in, int width_out, int height_out, int depth_in, int depth_out, std::vector<wo_connections>& in2wo); void calc_weight2io(int width_in, int height_in, int width_out, int height_out, int depth_in, int depth_out, std::vector<io_connections>& weight2io); void calc_bias2out(int width_in, int height_in, int width_out, int height_out, int depth_in, int depth_out, std::vector<std::vector<int> >& bias2out); bool Forward_C1(); //前向传播 bool Forward_S2(); bool Forward_C3(); bool Forward_S4(); bool Forward_C5(); bool Forward_output(); bool Backward_output(); bool Backward_C5(); //反向传播 bool Backward_S4(); bool Backward_C3(); bool Backward_S2(); bool Backward_C1(); bool Backward_input(); bool UpdateWeights(); //更新权值、阈值 void update_weights_bias(const float* delta, float* weight, int len); private: float* data_input_train; //原始标准输入数据,训练,范围:[-1, 1] float* data_output_train; //原始标准期望结果,训练,范围:[-0.9, 0.9] float* data_input_test; //原始标准输入数据,测试,范围:[-1, 1] float* data_output_test; //原始标准期望结果,测试,范围:[-0.9, 0.9] float* data_single_image; float* data_single_label; float weight_C1[len_weight_C1_CNN]; float bias_C1[len_bias_C1_CNN]; float weight_S2[len_weight_S2_CNN]; float bias_S2[len_bias_S2_CNN]; float weight_C3[len_weight_C3_CNN]; float bias_C3[len_bias_C3_CNN]; float weight_S4[len_weight_S4_CNN]; float bias_S4[len_bias_S4_CNN]; float weight_C5[len_weight_C5_CNN]; float bias_C5[len_bias_C5_CNN]; float weight_output[len_weight_output_CNN]; float bias_output[len_bias_output_CNN]; float neuron_input[num_neuron_input_CNN]; //data_single_image float neuron_C1[num_neuron_C1_CNN]; float neuron_S2[num_neuron_S2_CNN]; float neuron_C3[num_neuron_C3_CNN]; float neuron_S4[num_neuron_S4_CNN]; float neuron_C5[num_neuron_C5_CNN]; float neuron_output[num_neuron_output_CNN]; float delta_neuron_output[num_neuron_output_CNN]; //神经元误差 float delta_neuron_C5[num_neuron_C5_CNN]; float delta_neuron_S4[num_neuron_S4_CNN]; float delta_neuron_C3[num_neuron_C3_CNN]; float delta_neuron_S2[num_neuron_S2_CNN]; float delta_neuron_C1[num_neuron_C1_CNN]; float delta_neuron_input[num_neuron_input_CNN]; float delta_weight_C1[len_weight_C1_CNN]; //权值、阈值误差 float delta_bias_C1[len_bias_C1_CNN]; float delta_weight_S2[len_weight_S2_CNN]; float delta_bias_S2[len_bias_S2_CNN]; float delta_weight_C3[len_weight_C3_CNN]; float delta_bias_C3[len_bias_C3_CNN]; float delta_weight_S4[len_weight_S4_CNN]; float delta_bias_S4[len_bias_S4_CNN]; float delta_weight_C5[len_weight_C5_CNN]; float delta_bias_C5[len_bias_C5_CNN]; float delta_weight_output[len_weight_output_CNN]; float delta_bias_output[len_bias_output_CNN]; std::vector<wi_connections> out2wi_S2; // out_id -> [(weight_id, in_id)] std::vector<int> out2bias_S2; std::vector<wi_connections> out2wi_S4; std::vector<int> out2bias_S4; std::vector<wo_connections> in2wo_C3; // in_id -> [(weight_id, out_id)] std::vector<io_connections> weight2io_C3; // weight_id -> [(in_id, out_id)] std::vector<std::vector<int> > bias2out_C3; std::vector<wo_connections> in2wo_C1; std::vector<io_connections> weight2io_C1; std::vector<std::vector<int> > bias2out_C1; }; } #endif //_CNN_HPP_CNN.cpp:
#include <assert.h> #include <time.h> #include <iostream> #include <fstream> #include <numeric> #include <windows.h> #include <random> #include <algorithm> #include <CNN.hpp> namespace ANN { CNN::CNN() { data_input_train = NULL; data_output_train = NULL; data_input_test = NULL; data_output_test = NULL; data_single_image = NULL; data_single_label = NULL; } CNN::~CNN() { release(); } void CNN::release() { if (data_input_train) { delete[] data_input_train; data_input_train = NULL; } if (data_output_train) { delete[] data_output_train; data_output_train = NULL; } if (data_input_test) { delete[] data_input_test; data_input_test = NULL; } if (data_output_test) { delete[] data_output_test; data_output_test = NULL; } } void CNN::init_variable(float* val, float c, int len) { for (int i = 0; i < len; i++) { val[i] = c; } } void CNN::init() { int len1 = width_image_input_CNN * height_image_input_CNN * num_patterns_train_CNN; data_input_train = new float[len1]; init_variable(data_input_train, -1.0, len1); int len2 = num_map_output_CNN * num_patterns_train_CNN; data_output_train = new float[len2]; init_variable(data_output_train, -0.9, len2); int len3 = width_image_input_CNN * height_image_input_CNN * num_patterns_test_CNN; data_input_test = new float[len3]; init_variable(data_input_test, -1.0, len3); int len4 = num_map_output_CNN * num_patterns_test_CNN; data_output_test = new float[len4]; init_variable(data_output_test, -0.9, len4); initWeightThreshold(); getSrcData(); } float CNN::uniform_rand(float min, float max) { static std::mt19937 gen(1); std::uniform_real_distribution<float> dst(min, max); return dst(gen); } bool CNN::uniform_rand(float* src, int len, float min, float max) { for (int i = 0; i < len; i++) { src[i] = uniform_rand(min, max); } return true; } bool CNN::initWeightThreshold() { srand(time(0) + rand()); const float scale = 6.0; //const float_t weight_base = std::sqrt(scale_ / (fan_in + fan_out)); //fan_in = width_kernel_conv_CNN * height_kernel_conv_CNN * num_map_input_CNN = 5 * 5 * 1 //fan_out = width_kernel_conv_CNN * height_kernel_conv_CNN * num_map_C1_CNN = 5 * 5 * 6 float min_ = -std::sqrt(scale / (25.0 + 150.0)); float max_ = std::sqrt(scale / (25.0 + 150.0)); uniform_rand(weight_C1, len_weight_C1_CNN, min_, max_); //for (int i = 0; i < len_weight_C1_CNN; i++) { // weight_C1[i] = -1 + 2 * ((float)rand()) / RAND_MAX; //[-1, 1] //} for (int i = 0; i < len_bias_C1_CNN; i++) { bias_C1[i] = -1 + 2 * ((float)rand()) / RAND_MAX;//0.0;// } min_ = -std::sqrt(scale / (4.0 + 1.0)); max_ = std::sqrt(scale / (4.0 + 1.0)); uniform_rand(weight_S2, len_weight_S2_CNN, min_, max_); //for (int i = 0; i < len_weight_S2_CNN; i++) { // weight_S2[i] = -1 + 2 * ((float)rand()) / RAND_MAX; //} for (int i = 0; i < len_bias_S2_CNN; i++) { bias_S2[i] = -1 + 2 * ((float)rand()) / RAND_MAX;//0.0;// } min_ = -std::sqrt(scale / (150.0 + 400.0)); max_ = std::sqrt(scale / (150.0 + 400.0)); uniform_rand(weight_C3, len_weight_C3_CNN, min_, max_); //for (int i = 0; i < len_weight_C3_CNN; i++) { // weight_C3[i] = -1 + 2 * ((float)rand()) / RAND_MAX; //} for (int i = 0; i < len_bias_C3_CNN; i++) { bias_C3[i] = -1 + 2 * ((float)rand()) / RAND_MAX;//0.0;// } min_ = -std::sqrt(scale / (4.0 + 1.0)); max_ = std::sqrt(scale / (4.0 + 1.0)); uniform_rand(weight_S4, len_weight_S4_CNN, min_, max_); //for (int i = 0; i < len_weight_S4_CNN; i++) { // weight_S4[i] = -1 + 2 * ((float)rand()) / RAND_MAX; //} for (int i = 0; i < len_bias_S4_CNN; i++) { bias_S4[i] = -1 + 2 * ((float)rand()) / RAND_MAX; //0.0;// } min_ = -std::sqrt(scale / (400.0 + 3000.0)); max_ = std::sqrt(scale / (400.0 + 3000.0)); uniform_rand(weight_C5, len_weight_C5_CNN, min_, max_); //for (int i = 0; i < len_weight_C5_CNN; i++) { // weight_C5[i] = -1 + 2 * ((float)rand()) / RAND_MAX; //} for (int i = 0; i < len_bias_C5_CNN; i++) { bias_C5[i] =-1 + 2 * ((float)rand()) / RAND_MAX; //0.0;// } min_ = -std::sqrt(scale / (120.0 + 10.0)); max_ = std::sqrt(scale / (120.0 + 10.0)); uniform_rand(weight_output, len_weight_output_CNN, min_, max_); //for (int i = 0; i < len_weight_output_CNN; i++) { // weight_output[i] = -1 + 2 * ((float)rand()) / RAND_MAX; //} for (int i = 0; i < len_bias_output_CNN; i++) { bias_output[i] = -1 + 2 * ((float)rand()) / RAND_MAX;//0.0;// } return true; } static int reverseInt(int i) { unsigned char ch1, ch2, ch3, ch4; ch1 = i & 255; ch2 = (i >> 8) & 255; ch3 = (i >> 16) & 255; ch4 = (i >> 24) & 255; return((int)ch1 << 24) + ((int)ch2 << 16) + ((int)ch3 << 8) + ch4; } static void readMnistImages(std::string filename, float* data_dst, int num_image) { const int width_src_image = 28; const int height_src_image = 28; const int x_padding = 2; const int y_padding = 2; const float scale_min = -1; const float scale_max = 1; std::ifstream file(filename, std::ios::binary); assert(file.is_open()); int magic_number = 0; int number_of_images = 0; int n_rows = 0; int n_cols = 0; file.read((char*)&magic_number, sizeof(magic_number)); magic_number = reverseInt(magic_number); file.read((char*)&number_of_images, sizeof(number_of_images)); number_of_images = reverseInt(number_of_images); assert(number_of_images == num_image); file.read((char*)&n_rows, sizeof(n_rows)); n_rows = reverseInt(n_rows); file.read((char*)&n_cols, sizeof(n_cols)); n_cols = reverseInt(n_cols); assert(n_rows == height_src_image && n_cols == width_src_image); int size_single_image = width_image_input_CNN * height_image_input_CNN; for (int i = 0; i < number_of_images; ++i) { int addr = size_single_image * i; for (int r = 0; r < n_rows; ++r) { for (int c = 0; c < n_cols; ++c) { unsigned char temp = 0; file.read((char*)&temp, sizeof(temp)); data_dst[addr + width_image_input_CNN * (r + y_padding) + c + x_padding] = (temp / 255.0) * (scale_max - scale_min) + scale_min; } } } } static void readMnistLabels(std::string filename, float* data_dst, int num_image) { const float scale_min = -0.9; const float scale_max = 0.9; std::ifstream file(filename, std::ios::binary); assert(file.is_open()); int magic_number = 0; int number_of_images = 0; file.read((char*)&magic_number, sizeof(magic_number)); magic_number = reverseInt(magic_number); file.read((char*)&number_of_images, sizeof(number_of_images)); number_of_images = reverseInt(number_of_images); assert(number_of_images == num_image); for (int i = 0; i < number_of_images; ++i) { unsigned char temp = 0; file.read((char*)&temp, sizeof(temp)); data_dst[i * num_map_output_CNN + temp] = scale_max; } } bool CNN::getSrcData() { assert(data_input_train && data_output_train && data_input_test && data_output_test); std::string filename_train_images = "D:/Download/MNIST/train-images.idx3-ubyte"; std::string filename_train_labels = "D:/Download/MNIST/train-labels.idx1-ubyte"; readMnistImages(filename_train_images, data_input_train, num_patterns_train_CNN); /*unsigned char* p = new unsigned char[num_neuron_input_CNN]; memset(p, 0, sizeof(unsigned char) * num_neuron_input_CNN); for (int j = 0, i = 59998 * num_neuron_input_CNN; j< num_neuron_input_CNN; j++, i++) { p[j] = (unsigned char)((data_input_train[i] + 1.0) / 2.0 * 255.0); } delete[] p;*/ readMnistLabels(filename_train_labels, data_output_train, num_patterns_train_CNN); /*float* q = new float[num_neuron_output_CNN]; memset(q, 0, sizeof(float) * num_neuron_output_CNN); for (int j = 0, i = 59998 * num_neuron_output_CNN; j < num_neuron_output_CNN; j++, i++) { q[j] = data_output_train[i]; } delete[] q;*/ std::string filename_test_images = "D:/Download/MNIST/t10k-images.idx3-ubyte"; std::string filename_test_labels = "D:/Download/MNIST/t10k-labels.idx1-ubyte"; readMnistImages(filename_test_images, data_input_test, num_patterns_test_CNN); readMnistLabels(filename_test_labels, data_output_test, num_patterns_test_CNN); return true; } bool CNN::train() { out2wi_S2.clear(); out2bias_S2.clear(); out2wi_S4.clear(); out2bias_S4.clear(); in2wo_C3.clear(); weight2io_C3.clear(); bias2out_C3.clear(); in2wo_C1.clear(); weight2io_C1.clear(); bias2out_C1.clear(); calc_out2wi(width_image_C1_CNN, height_image_C1_CNN, width_image_S2_CNN, height_image_S2_CNN, num_map_S2_CNN, out2wi_S2); calc_out2bias(width_image_S2_CNN, height_image_S2_CNN, num_map_S2_CNN, out2bias_S2); calc_out2wi(width_image_C3_CNN, height_image_C3_CNN, width_image_S4_CNN, height_image_S4_CNN, num_map_S4_CNN, out2wi_S4); calc_out2bias(width_image_S4_CNN, height_image_S4_CNN, num_map_S4_CNN, out2bias_S4); calc_in2wo(width_image_C3_CNN, height_image_C3_CNN, width_image_S4_CNN, height_image_S4_CNN, num_map_C3_CNN, num_map_S4_CNN, in2wo_C3); calc_weight2io(width_image_C3_CNN, height_image_C3_CNN, width_image_S4_CNN, height_image_S4_CNN, num_map_C3_CNN, num_map_S4_CNN, weight2io_C3); calc_bias2out(width_image_C3_CNN, height_image_C3_CNN, width_image_S4_CNN, height_image_S4_CNN, num_map_C3_CNN, num_map_S4_CNN, bias2out_C3); calc_in2wo(width_image_C1_CNN, height_image_C1_CNN, width_image_S2_CNN, height_image_S2_CNN, num_map_C1_CNN, num_map_C3_CNN, in2wo_C1); calc_weight2io(width_image_C1_CNN, height_image_C1_CNN, width_image_S2_CNN, height_image_S2_CNN, num_map_C1_CNN, num_map_C3_CNN, weight2io_C1); calc_bias2out(width_image_C1_CNN, height_image_C1_CNN, width_image_S2_CNN, height_image_S2_CNN, num_map_C1_CNN, num_map_C3_CNN, bias2out_C1); int iter = 0; for (iter = 0; iter < num_epochs_CNN; iter++) { std::cout << "epoch: " << iter; float accuracyRate = test();//0; std::cout << ", accuray rate: " << accuracyRate << std::endl; if (accuracyRate > accuracy_rate_CNN) { saveModelFile("cnn.model"); std::cout << "generate cnn model" << std::endl; break; } for (int i = 0; i < num_patterns_train_CNN; i++) { data_single_image = data_input_train + i * num_neuron_input_CNN; data_single_label = data_output_train + i * num_neuron_output_CNN; Forward_C1(); Forward_S2(); Forward_C3(); Forward_S4(); Forward_C5(); Forward_output(); Backward_output(); Backward_C5(); Backward_S4(); Backward_C3(); Backward_S2(); Backward_C1(); Backward_input(); UpdateWeights(); } } if (iter == num_epochs_CNN) { saveModelFile("cnn.model"); std::cout << "generate cnn model" << std::endl; } return true; } float CNN::activation_function_tanh(float x) { float ep = std::exp(x); float em = std::exp(-x); return (ep - em) / (ep + em); } float CNN::activation_function_tanh_derivative(float x) { return (1.0 - x * x); } float CNN::activation_function_identity(float x) { return x; } float CNN::activation_function_identity_derivative(float x) { return 1; } float CNN::loss_function_mse(float y, float t) { return (y - t) * (y - t) / 2; } float CNN::loss_function_mse_derivative(float y, float t) { return (y - t); } void CNN::loss_function_gradient(const float* y, const float* t, float* dst, int len) { for (int i = 0; i < len; i++) { dst[i] = loss_function_mse_derivative(y[i], t[i]); } } float CNN::dot_product(const float* s1, const float* s2, int len) { float result = 0.0; for (int i = 0; i < len; i++) { result += s1[i] * s2[i]; } return result; } bool CNN::muladd(const float* src, float c, int len, float* dst) { for (int i = 0; i < len; i++) { dst[i] += (src[i] * c); } return true; } int CNN::get_index(int x, int y, int channel, int width, int height, int depth) { assert(x >= 0 && x < width); assert(y >= 0 && y < height); assert(channel >= 0 && channel < depth); return (height * channel + y) * width + x; } bool CNN::Forward_C1() { init_variable(neuron_C1, 0.0, num_neuron_C1_CNN); /*for (int i = 0; i < num_map_C1_CNN; i++) { int addr1 = i * width_image_C1_CNN * height_image_C1_CNN; int addr2 = i * width_kernel_conv_CNN * height_kernel_conv_CNN; float* image = &neuron_C1[0] + addr1; const float* weight = &weight_C1[0] + addr2; for (int y = 0; y < height_image_C1_CNN; y++) { for (int x = 0; x < width_image_C1_CNN; x++) { float sum = 0.0; const float* image_input = data_single_image + y * width_image_input_CNN + x; for (int m = 0; m < height_kernel_conv_CNN; m++) { for (int n = 0; n < width_kernel_conv_CNN; n++) { sum += weight[m * width_kernel_conv_CNN + n] * image_input[m * width_image_input_CNN + n]; } } image[y * width_image_C1_CNN + x] = activation_function_tanh(sum + bias_C1[i]); //tanh((w*x + b)) } } }*/ for (int o = 0; o < num_map_C1_CNN; o++) { for (int inc = 0; inc < num_map_input_CNN; inc++) { int addr1 = get_index(0, 0, num_map_input_CNN * o + inc, width_kernel_conv_CNN, height_kernel_conv_CNN, num_map_C1_CNN); int addr2 = get_index(0, 0, inc, width_image_input_CNN, height_image_input_CNN, num_map_input_CNN); int addr3 = get_index(0, 0, o, width_image_C1_CNN, height_image_C1_CNN, num_map_C1_CNN); const float* pw = &weight_C1[0] + addr1; const float* pi = data_single_image + addr2; float* pa = &neuron_C1[0] + addr3; for (int y = 0; y < height_image_C1_CNN; y++) { for (int x = 0; x < width_image_C1_CNN; x++) { const float* ppw = pw; const float* ppi = pi + y * width_image_input_CNN + x; float sum = 0.0; for (int wy = 0; wy < height_kernel_conv_CNN; wy++) { for (int wx = 0; wx < width_kernel_conv_CNN; wx++) { sum += *ppw++ * ppi[wy * width_image_input_CNN + wx]; } } pa[y * width_image_C1_CNN + x] += sum; } } } int addr3 = get_index(0, 0, o, width_image_C1_CNN, height_image_C1_CNN, num_map_C1_CNN); float* pa = &neuron_C1[0] + addr3; float b = bias_C1[o]; for (int y = 0; y < height_image_C1_CNN; y++) { for (int x = 0; x < width_image_C1_CNN; x++) { pa[y * width_image_C1_CNN + x] += b; } } } for (int i = 0; i < num_neuron_C1_CNN; i++) { neuron_C1[i] = activation_function_tanh(neuron_C1[i]); } return true; } void CNN::calc_out2wi(int width_in, int height_in, int width_out, int height_out, int depth_out, std::vector<wi_connections>& out2wi) { for (int i = 0; i < depth_out; i++) { int block = width_in * height_in * i; for (int y = 0; y < height_out; y++) { for (int x = 0; x < width_out; x++) { int rows = y * width_kernel_pooling_CNN; int cols = x * height_kernel_pooling_CNN; wi_connections wi_connections_; std::pair<int, int> pair_; for (int m = 0; m < width_kernel_pooling_CNN; m++) { for (int n = 0; n < height_kernel_pooling_CNN; n++) { pair_.first = i; pair_.second = (rows + m) * width_in + cols + n + block; wi_connections_.push_back(pair_); } } out2wi.push_back(wi_connections_); } } } } void CNN::calc_out2bias(int width, int height, int depth, std::vector<int>& out2bias) { for (int i = 0; i < depth; i++) { for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { out2bias.push_back(i); } } } } void CNN::calc_in2wo(int width_in, int height_in, int width_out, int height_out, int depth_in, int depth_out, std::vector<wo_connections>& in2wo) { int len = width_in * height_in * depth_in; in2wo.resize(len); for (int c = 0; c < depth_in; c++) { for (int y = 0; y < height_in; y += height_kernel_pooling_CNN) { for (int x = 0; x < width_in; x += width_kernel_pooling_CNN) { int dymax = min(size_pooling_CNN, height_in - y); int dxmax = min(size_pooling_CNN, width_in - x); int dstx = x / width_kernel_pooling_CNN; int dsty = y / height_kernel_pooling_CNN; for (int dy = 0; dy < dymax; dy++) { for (int dx = 0; dx < dxmax; dx++) { int index_in = get_index(x + dx, y + dy, c, width_in, height_in, depth_in); int index_out = get_index(dstx, dsty, c, width_out, height_out, depth_out); wo_connections wo_connections_; std::pair<int, int> pair_; pair_.first = c; pair_.second = index_out; wo_connections_.push_back(pair_); in2wo[index_in] = wo_connections_; } } } } } } void CNN::calc_weight2io(int width_in, int height_in, int width_out, int height_out, int depth_in, int depth_out, std::vector<io_connections>& weight2io) { int len = depth_in; weight2io.resize(len); for (int c = 0; c < depth_in; c++) { for (int y = 0; y < height_in; y += height_kernel_pooling_CNN) { for (int x = 0; x < width_in; x += width_kernel_pooling_CNN) { int dymax = min(size_pooling_CNN, height_in - y); int dxmax = min(size_pooling_CNN, width_in - x); int dstx = x / width_kernel_pooling_CNN; int dsty = y / height_kernel_pooling_CNN; for (int dy = 0; dy < dymax; dy++) { for (int dx = 0; dx < dxmax; dx++) { int index_in = get_index(x + dx, y + dy, c, width_in, height_in, depth_in); int index_out = get_index(dstx, dsty, c, width_out, height_out, depth_out); std::pair<int, int> pair_; pair_.first = index_in; pair_.second = index_out; weight2io[c].push_back(pair_); } } } } } } void CNN::calc_bias2out(int width_in, int height_in, int width_out, int height_out, int depth_in, int depth_out, std::vector<std::vector<int> >& bias2out) { int len = depth_in; bias2out.resize(len); for (int c = 0; c < depth_in; c++) { for (int y = 0; y < height_out; y++) { for (int x = 0; x < width_out; x++) { int index_out = get_index(x, y, c, width_out, height_out, depth_out); bias2out[c].push_back(index_out); } } } } bool CNN::Forward_S2() { init_variable(neuron_S2, 0.0, num_neuron_S2_CNN); float scale_factor = 1.0 / (width_kernel_pooling_CNN * height_kernel_pooling_CNN); /*for (int i = 0; i < num_map_S2_CNN; i++) { int addr1 = i * width_image_S2_CNN * height_image_S2_CNN; int addr2 = i * width_image_C1_CNN * height_image_C1_CNN; float* image = &neuron_S2[0] + addr1; const float* image_input = &neuron_C1[0] + addr2; for (int y = 0; y < height_image_S2_CNN; y++) { for (int x = 0; x < width_image_S2_CNN; x++) { float sum = 0.0; int rows = y * height_kernel_pooling_CNN; int cols = x * width_kernel_pooling_CNN; for (int m = 0; m < height_kernel_pooling_CNN; m++) { for (int n = 0; n < width_kernel_pooling_CNN; n++) { sum += image_input[(rows + m) * width_image_C1_CNN + cols + n]; } } image[y * width_image_S2_CNN + x] = activation_function_tanh(sum * weight_S2[i] * scale_factor + bias_S2[i]); } } }*/ assert(out2wi_S2.size() == num_neuron_S2_CNN); assert(out2bias_S2.size() == num_neuron_S2_CNN); for (int i = 0; i < num_neuron_S2_CNN; i++) { const wi_connections& connections = out2wi_S2[i]; neuron_S2[i] = 0; for (int index = 0; index < connections.size(); index++) { neuron_S2[i] += weight_S2[connections[index].first] * neuron_C1[connections[index].second]; } neuron_S2[i] *= scale_factor; neuron_S2[i] += bias_S2[out2bias_S2[i]]; } for (int i = 0; i < num_neuron_S2_CNN; i++) { neuron_S2[i] = activation_function_tanh(neuron_S2[i]); } return true; } bool CNN::Forward_C3() { init_variable(neuron_C3, 0.0, num_neuron_C3_CNN); /*for (int i = 0; i < num_map_C3_CNN; i++) { int addr1 = i * width_image_C3_CNN * height_image_C3_CNN; int addr2 = i * width_kernel_conv_CNN * height_kernel_conv_CNN * num_map_S2_CNN; float* image = &neuron_C3[0] + addr1; const float* weight = &weight_C3[0] + addr2; for (int j = 0; j < num_map_S2_CNN; j++) { int addr3 = j * width_image_S2_CNN * height_image_S2_CNN; int addr4 = j * width_kernel_conv_CNN * height_kernel_conv_CNN; const float* image_input = &neuron_S2[0] + addr3; const float* weight_ = weight + addr4; for (int y = 0; y < height_image_C3_CNN; y++) { for (int x = 0; x < width_image_C3_CNN; x++) { float sum = 0.0; const float* image_input_ = image_input + y * width_image_S2_CNN + x; for (int m = 0; m < height_kernel_conv_CNN; m++) { for (int n = 0; n < width_kernel_conv_CNN; n++) { sum += weight_[m * width_kernel_conv_CNN + n] * image_input_[m * width_image_S2_CNN + n]; } } image[y * width_image_C3_CNN + x] += sum; } } } for (int y = 0; y < height_image_C3_CNN; y++) { for (int x = 0; x < width_image_C3_CNN; x++) { image[y * width_image_C3_CNN + x] = activation_function_tanh(image[y * width_image_C3_CNN + x] + bias_C3[i]); } } }*/ for (int o = 0; o < num_map_C3_CNN; o++) { for (int inc = 0; inc < num_map_S2_CNN; inc++) { int addr1 = get_index(0, 0, num_map_S2_CNN * o + inc, width_kernel_conv_CNN, height_kernel_conv_CNN, num_map_C3_CNN * num_map_S2_CNN); int addr2 = get_index(0, 0, inc, width_image_S2_CNN, height_image_S2_CNN, num_map_S2_CNN); int addr3 = get_index(0, 0, o, width_image_C3_CNN, height_image_C3_CNN, num_map_C3_CNN); const float* pw = &weight_C3[0] + addr1; const float* pi = &neuron_S2[0] + addr2; float* pa = &neuron_C3[0] + addr3; for (int y = 0; y < height_image_C3_CNN; y++) { for (int x = 0; x < width_image_C3_CNN; x++) { const float* ppw = pw; const float* ppi = pi + y * width_image_S2_CNN + x; float sum = 0.0; for (int wy = 0; wy < height_kernel_conv_CNN; wy++) { for (int wx = 0; wx < width_kernel_conv_CNN; wx++) { sum += *ppw++ * ppi[wy * width_image_S2_CNN + wx]; } } pa[y * width_image_C3_CNN + x] += sum; } } } int addr3 = get_index(0, 0, o, width_image_C3_CNN, height_image_C3_CNN, num_map_C3_CNN); float* pa = &neuron_C3[0] + addr3; float b = bias_C3[o]; for (int y = 0; y < height_image_C3_CNN; y++) { for (int x = 0; x < width_image_C3_CNN; x++) { pa[y * width_image_C3_CNN + x] += b; } } } for (int i = 0; i < num_neuron_C3_CNN; i++) { neuron_C3[i] = activation_function_tanh(neuron_C3[i]); } return true; } bool CNN::Forward_S4() { float scale_factor = 1.0 / (width_kernel_pooling_CNN * height_kernel_pooling_CNN); init_variable(neuron_S4, 0.0, num_neuron_S4_CNN); /*for (int i = 0; i < num_map_S4_CNN; i++) { int addr1 = i * width_image_S4_CNN * height_image_S4_CNN; int addr2 = i * width_image_C3_CNN * height_image_C3_CNN; float* image = &neuron_S4[0] + addr1; const float* image_input = &neuron_C3[0] + addr2; for (int y = 0; y < height_image_S4_CNN; y++) { for (int x = 0; x < width_image_S4_CNN; x++) { float sum = 0.0; int rows = y * height_kernel_pooling_CNN; int cols = x * width_kernel_pooling_CNN; for (int m = 0; m < height_kernel_pooling_CNN; m++) { for (int n = 0; n < width_kernel_pooling_CNN; n++) { sum += image_input[(rows + m) * width_image_C3_CNN + cols + n]; } } image[y * width_image_S4_CNN + x] = activation_function_tanh(sum * weight_S4[i] * scale_factor + bias_S4[i]); } } }*/ assert(out2wi_S4.size() == num_neuron_S4_CNN); assert(out2bias_S4.size() == num_neuron_S4_CNN); for (int i = 0; i < num_neuron_S4_CNN; i++) { const wi_connections& connections = out2wi_S4[i]; neuron_S4[i] = 0.0; for (int index = 0; index < connections.size(); index++) { neuron_S4[i] += weight_S4[connections[index].first] * neuron_C3[connections[index].second]; } neuron_S4[i] *= scale_factor; neuron_S4[i] += bias_S4[out2bias_S4[i]]; } for (int i = 0; i < num_neuron_S4_CNN; i++) { neuron_S4[i] = activation_function_tanh(neuron_S4[i]); } //int count_num = 0; //for (int i = 0; i < num_neuron_S4_CNN; i++) { // if (fabs(neuron_S4[i] - Tmp_neuron_S4[i]) > 0.0000001/*0.0000000001*/) { // count_num++; // std::cout << "i = " << i << " , old: " << neuron_S4[i] << " , new: " << Tmp_neuron_S4[i] << std::endl; // } //} //std::cout << "count_num: " << count_num << std::endl; return true; } bool CNN::Forward_C5() { init_variable(neuron_C5, 0.0, num_neuron_C5_CNN); /*for (int i = 0; i < num_map_C5_CNN; i++) { int addr1 = i * width_image_C5_CNN * height_image_C5_CNN; int addr2 = i * width_kernel_conv_CNN * height_kernel_conv_CNN * num_map_S4_CNN; float* image = &neuron_C5[0] + addr1; const float* weight = &weight_C5[0] + addr2; for (int j = 0; j < num_map_S4_CNN; j++) { int addr3 = j * width_kernel_conv_CNN * height_kernel_conv_CNN; int addr4 = j * width_image_S4_CNN * height_image_S4_CNN; const float* weight_ = weight + addr3; const float* image_input = &neuron_S4[0] + addr4; for (int y = 0; y < height_image_C5_CNN; y++) { for (int x = 0; x < width_image_C5_CNN; x++) { float sum = 0.0; const float* image_input_ = image_input + y * width_image_S4_CNN + x; for (int m = 0; m < height_kernel_conv_CNN; m++) { for (int n = 0; n < width_kernel_conv_CNN; n++) { sum += weight_[m * width_kernel_conv_CNN + n] * image_input_[m * width_image_S4_CNN + n]; } } image[y * width_image_C5_CNN + x] += sum; } } } for (int y = 0; y < height_image_C5_CNN; y++) { for (int x = 0; x < width_image_C5_CNN; x++) { image[y * width_image_C5_CNN + x] = activation_function_tanh(image[y * width_image_C5_CNN + x] + bias_C5[i]); } } }*/ for (int o = 0; o < num_map_C5_CNN; o++) { for (int inc = 0; inc < num_map_S4_CNN; inc++) { int addr1 = get_index(0, 0, num_map_S4_CNN * o + inc, width_kernel_conv_CNN, height_kernel_conv_CNN, num_map_C5_CNN * num_map_S4_CNN); int addr2 = get_index(0, 0, inc, width_image_S4_CNN, height_image_S4_CNN, num_map_S4_CNN); int addr3 = get_index(0, 0, o, width_image_C5_CNN, height_image_C5_CNN, num_map_C5_CNN); const float *pw = &weight_C5[0] + addr1; const float *pi = &neuron_S4[0] + addr2; float *pa = &neuron_C5[0] + addr3; for (int y = 0; y < height_image_C5_CNN; y++) { for (int x = 0; x < width_image_C5_CNN; x++) { const float *ppw = pw; const float *ppi = pi + y * width_image_S4_CNN + x; float sum = 0.0; for (int wy = 0; wy < height_kernel_conv_CNN; wy++) { for (int wx = 0; wx < width_kernel_conv_CNN; wx++) { sum += *ppw++ * ppi[wy * width_image_S4_CNN + wx]; } } pa[y * width_image_C5_CNN + x] += sum; } } } int addr3 = get_index(0, 0, o, width_image_C5_CNN, height_image_C5_CNN, num_map_C5_CNN); float *pa = &neuron_C5[0] + addr3; float b = bias_C5[o]; for (int y = 0; y < height_image_C5_CNN; y++) { for (int x = 0; x < width_image_C5_CNN; x++) { pa[y * width_image_C5_CNN + x] += b; } } } for (int i = 0; i < num_neuron_C5_CNN; i++) { neuron_C5[i] = activation_function_tanh(neuron_C5[i]); } return true; } bool CNN::Forward_output() { init_variable(neuron_output, 0.0, num_neuron_output_CNN); /*float* image = &neuron_output[0]; const float* weight = &weight_output[0]; for (int i = 0; i < num_neuron_output_CNN; i++) { for (int j = 0; j < num_neuron_C5_CNN; j++) { image[i] += (weight[j * num_neuron_output_CNN + i] * neuron_C5[j]); } image[i] = activation_function_tanh(image[i] + bias_output[i]); }*/ for (int i = 0; i < num_neuron_output_CNN; i++) { neuron_output[i] = 0.0; for (int c = 0; c < num_neuron_C5_CNN; c++) { neuron_output[i] += weight_output[c * num_neuron_output_CNN + i] * neuron_C5[c]; } neuron_output[i] += bias_output[i]; } for (int i = 0; i < num_neuron_output_CNN; i++) { neuron_output[i] = activation_function_tanh(neuron_output[i]); } return true; } bool CNN::Backward_output() { init_variable(delta_neuron_output, 0.0, num_neuron_output_CNN); /*float gradient[num_neuron_output_CNN]; const float* t = &data_single_label[0]; float tmp[num_neuron_output_CNN]; for (int i = 0; i < num_neuron_output_CNN; i++) { gradient[i] = loss_function_mse_derivative(neuron_output[i], t[i]); } for (int i = 0; i < num_neuron_output_CNN; i++) { init_variable(tmp, 0.0, num_neuron_output_CNN); tmp[i] = activation_function_tanh_derivative(neuron_output[i]); delta_neuron_output[i] = dot_product(gradient, tmp, num_neuron_output_CNN); }*/ float dE_dy[num_neuron_output_CNN]; init_variable(dE_dy, 0.0, num_neuron_output_CNN); loss_function_gradient(neuron_output, data_single_label, dE_dy, num_neuron_output_CNN); // delta = dE/da = (dE/dy) * (dy/da) for (int i = 0; i < num_neuron_output_CNN; i++) { float dy_da[num_neuron_output_CNN]; init_variable(dy_da, 0.0, num_neuron_output_CNN); dy_da[i] = activation_function_tanh_derivative(neuron_output[i]); delta_neuron_output[i] = dot_product(dE_dy, dy_da, num_neuron_output_CNN); } return true; } bool CNN::Backward_C5() { init_variable(delta_neuron_C5, 0.0, num_neuron_C5_CNN); init_variable(delta_weight_output, 0.0, len_weight_output_CNN); init_variable(delta_bias_output, 0.0, len_bias_output_CNN); /*for (int i = 0; i < num_neuron_C5_CNN; i++) { delta_neuron_C5[i] = dot_product(&delta_neuron_output[0], &weight_output[0] + i * num_neuron_output_CNN, num_neuron_output_CNN); delta_neuron_C5[i] *= activation_function_tanh_derivative(neuron_C5[i]); } for (int j = 0; j < num_neuron_C5_CNN; j++) { muladd(&delta_neuron_output[0], neuron_C5[j], num_neuron_output_CNN, &delta_weight_output[0] + j * num_neuron_output_CNN); } for (int i = 0; i < num_neuron_output_CNN; i++) { delta_bias_output[i] += delta_neuron_output[i]; }*/ for (int c = 0; c < num_neuron_C5_CNN; c++) { // propagate delta to previous layer // prev_delta[c] += current_delta[r] * W_[c * out_size_ + r] delta_neuron_C5[c] = dot_product(&delta_neuron_output[0], &weight_output[c * num_neuron_output_CNN], num_neuron_output_CNN); delta_neuron_C5[c] *= activation_function_tanh_derivative(neuron_C5[c]); } // accumulate weight-step using delta // dW[c * out_size + i] += current_delta[i] * prev_out[c] for (int c = 0; c < num_neuron_C5_CNN; c++) { muladd(&delta_neuron_output[0], neuron_C5[c], num_neuron_output_CNN, &delta_weight_output[0] + c * num_neuron_output_CNN); } for (int i = 0; i < len_bias_output_CNN; i++) { delta_bias_output[i] += delta_neuron_output[i]; } //int count_num = 0; //for (int i = 0; i < num_neuron_C5_CNN; i++) { // if (fabs(delta_neuron_C5[i] - Tmp_delta_neuron_C5[i]) > 0.0000001/*0.0000000001*/) { // count_num++; // } //} //std::cout << "delta_neuron count_num: " << count_num << std::endl; //count_num = 0; //for (int i = 0; i < len_weight_output_CNN; i++) { // if (fabs(delta_weight_output[i] - Tmp_delta_weight_output[i]) > 0.0000001/*0.0000000001*/) { // count_num++; // } //} //std::cout << "delta_weight count_num: " << count_num << std::endl; //count_num = 0; //for (int i = 0; i < len_bias_output_CNN; i++) { // if (fabs(delta_bias_output[i] - Tmp_delta_bias_output[i]) > 0.0000001/*0.0000000001*/) { // count_num++; // } //} //std::cout << "delta_bias count_num: " << count_num << std::endl; return true; } bool CNN::Backward_S4() { init_variable(delta_neuron_S4, 0.0, num_neuron_S4_CNN); init_variable(delta_weight_C5, 0.0, len_weight_C5_CNN); init_variable(delta_bias_C5, 0.0, len_bias_C5_CNN); /*for (int i = 0; i < num_map_S4_CNN; i++) { for (int j = 0; j < num_map_C5_CNN; j++) { int addr1 = width_kernel_conv_CNN * height_kernel_conv_CNN * (num_map_S4_CNN * j + i); int addr2 = width_image_S4_CNN * height_image_S4_CNN * i; const float* weight_c5 = &weight_C5[0] + addr1; const float* delta_c5 = &delta_neuron_C5[0] + width_image_C5_CNN * height_image_C5_CNN * j; float* delta_s4 = &delta_neuron_S4[0] + addr2; for (int y = 0; y < height_image_C5_CNN; y++) { for (int x = 0; x < width_image_C5_CNN; x++) { const float* weight_c5_ = weight_c5; const float delta_c5_ = delta_c5[y * width_image_C5_CNN + x]; float* delta_s4_ = delta_s4 + y * width_image_S4_CNN + x; for (int m = 0; m < height_kernel_conv_CNN; m++) { for (int n = 0; n < width_kernel_conv_CNN; n++) { delta_s4_[m * width_image_S4_CNN + n] += weight_c5_[m * width_kernel_conv_CNN + n] * delta_c5_; } } } } } } for (int i = 0; i < num_neuron_S4_CNN; i++) { delta_neuron_S4[i] *= activation_function_tanh_derivative(neuron_S4[i]); } for (int i = 0; i < num_map_S4_CNN; i++) {//////// for (int j = 0; j < num_map_C5_CNN; j++) { for (int y = 0; y < height_kernel_conv_CNN; y++) { for (int x = 0; x < width_kernel_conv_CNN; x++) { int addr1 = (height_image_S4_CNN * i + y) * width_image_S4_CNN + x; int addr2 = (height_kernel_conv_CNN * (num_map_S4_CNN * j + i) + y) * width_kernel_conv_CNN + x; int addr3 = height_image_C5_CNN * j * width_image_C5_CNN; float dst = 0; const float* neuron_s4 = &neuron_S4[0] + addr1; const float* delta_c5 = &delta_neuron_C5[0] + addr3; for (int m = 0; m < height_image_C5_CNN; m++) { dst += dot_product(neuron_s4 + m * width_image_S4_CNN, delta_c5 + y * width_image_C5_CNN, width_image_C5_CNN); } delta_weight_C5[addr2] += dst; } } } } for (int i = 0; i < num_map_C5_CNN; i++) { delta_bias_C5[i] += delta_neuron_C5[i]; }*/ // propagate delta to previous layer for (int inc = 0; inc < num_map_S4_CNN; inc++) { for (int outc = 0; outc < num_map_C5_CNN; outc++) { int addr1 = get_index(0, 0, num_map_S4_CNN * outc + inc, width_kernel_conv_CNN, height_kernel_conv_CNN, num_map_S4_CNN * num_map_C5_CNN); int addr2 = get_index(0, 0, outc, width_image_C5_CNN, height_image_C5_CNN, num_map_C5_CNN); int addr3 = get_index(0, 0, inc, width_image_S4_CNN, height_image_S4_CNN, num_map_S4_CNN); const float* pw = &weight_C5[0] + addr1; const float* pdelta_src = &delta_neuron_C5[0] + addr2; float* pdelta_dst = &delta_neuron_S4[0] + addr3; for (int y = 0; y < height_image_C5_CNN; y++) { for (int x = 0; x < width_image_C5_CNN; x++) { const float* ppw = pw; const float ppdelta_src = pdelta_src[y * width_image_C5_CNN + x]; float* ppdelta_dst = pdelta_dst + y * width_image_S4_CNN + x; for (int wy = 0; wy < height_kernel_conv_CNN; wy++) { for (int wx = 0; wx < width_kernel_conv_CNN; wx++) { ppdelta_dst[wy * width_image_S4_CNN + wx] += *ppw++ * ppdelta_src; } } } } } } for (int i = 0; i < num_neuron_S4_CNN; i++) { delta_neuron_S4[i] *= activation_function_tanh_derivative(neuron_S4[i]); } // accumulate dw for (int inc = 0; inc < num_map_S4_CNN; inc++) { for (int outc = 0; outc < num_map_C5_CNN; outc++) { for (int wy = 0; wy < height_kernel_conv_CNN; wy++) { for (int wx = 0; wx < width_kernel_conv_CNN; wx++) { int addr1 = get_index(wx, wy, inc, width_image_S4_CNN, height_image_S4_CNN, num_map_S4_CNN); int addr2 = get_index(0, 0, outc, width_image_C5_CNN, height_image_C5_CNN, num_map_C5_CNN); int addr3 = get_index(wx, wy, num_map_S4_CNN * outc + inc, width_kernel_conv_CNN, height_kernel_conv_CNN, num_map_S4_CNN * num_map_C5_CNN); float dst = 0.0; const float* prevo = &neuron_S4[0] + addr1; const float* delta = &delta_neuron_C5[0] + addr2; for (int y = 0; y < height_image_C5_CNN; y++) { dst += dot_product(prevo + y * width_image_S4_CNN, delta + y * width_image_C5_CNN, width_image_C5_CNN); } delta_weight_C5[addr3] += dst; } } } } // accumulate db for (int outc = 0; outc < num_map_C5_CNN; outc++) { int addr2 = get_index(0, 0, outc, width_image_C5_CNN, height_image_C5_CNN, num_map_C5_CNN); const float* delta = &delta_neuron_C5[0] + addr2; for (int y = 0; y < height_image_C5_CNN; y++) { for (int x = 0; x < width_image_C5_CNN; x++) { delta_bias_C5[outc] += delta[y * width_image_C5_CNN + x]; } } } return true; } bool CNN::Backward_C3() { init_variable(delta_neuron_C3, 0.0, num_neuron_C3_CNN); init_variable(delta_weight_S4, 0.0, len_weight_S4_CNN); init_variable(delta_bias_S4, 0.0, len_bias_S4_CNN); float scale_factor = 1.0 / (width_kernel_pooling_CNN * height_kernel_pooling_CNN); /*for (int i = 0; i < num_map_C3_CNN; i++) { int addr1 = width_image_S4_CNN * height_image_S4_CNN * i; int addr2 = width_image_C3_CNN * height_image_C3_CNN * i; const float* delta_s4 = &delta_neuron_S4[0] + addr1; float* delta_c3 = &delta_neuron_C3[0] + addr2; const float* neuron_c3 = &neuron_C3[0] + addr2; for (int y = 0; y < height_image_C3_CNN; y++) { for (int x = 0; x < width_image_C3_CNN; x++) { float delta = 0.0; int index = width_image_S4_CNN * (y / height_kernel_pooling_CNN) + x / width_kernel_pooling_CNN; delta = weight_S4[i] * delta_s4[index]; delta_c3[y * width_image_C3_CNN + x] = delta * scale_factor * activation_function_tanh_derivative(neuron_c3[y * width_image_C3_CNN + x]); } } } for (int i = 0; i < len_weight_S4_CNN; i++) { int addr1 = width_image_C3_CNN * height_image_C3_CNN * i; int addr2 = width_image_S4_CNN * height_image_S4_CNN * i; const float* neuron_c3 = &neuron_C3[0] + addr1; const float* delta_s4 = &delta_neuron_S4[0] + addr2; float diff = 0.0; for (int y = 0; y < height_image_C3_CNN; y++) { for (int x = 0; x < width_image_C3_CNN; x++) { int index = y / height_kernel_pooling_CNN * height_image_S4_CNN + x / width_kernel_pooling_CNN; diff += neuron_c3[y * width_image_C3_CNN + x] * delta_s4[index]; } } delta_weight_S4[i] += diff * scale_factor; } for (int i = 0; i < len_bias_S4_CNN; i++) { int addr1 = width_image_S4_CNN * height_image_S4_CNN * i; const float* delta_s4 = &delta_neuron_S4[0] + addr1; float diff = 0; for (int y = 0; y < height_image_S4_CNN; y++) { for (int x = 0; x < width_image_S4_CNN; x++) { diff += delta_s4[y * width_image_S4_CNN + x]; } } delta_bias_S4[i] += diff; }*/ assert(in2wo_C3.size() == num_neuron_C3_CNN); assert(weight2io_C3.size() == len_weight_S4_CNN); assert(bias2out_C3.size() == len_bias_S4_CNN); for (int i = 0; i < num_neuron_C3_CNN; i++) { const wo_connections& connections = in2wo_C3[i]; float delta = 0.0; for (int j = 0; j < connections.size(); j++) { delta += weight_S4[connections[j].first] * delta_neuron_S4[connections[j].second]; } delta_neuron_C3[i] = delta * scale_factor * activation_function_tanh_derivative(neuron_C3[i]); } for (int i = 0; i < len_weight_S4_CNN; i++) { const io_connections& connections = weight2io_C3[i]; float diff = 0; for (int j = 0; j < connections.size(); j++) { diff += neuron_C3[connections[j].first] * delta_neuron_S4[connections[j].second]; } delta_weight_S4[i] += diff * scale_factor; } for (int i = 0; i < len_bias_S4_CNN; i++) { const std::vector<int>& outs = bias2out_C3[i]; float diff = 0; for (int o = 0; o < outs.size(); o++) { diff += delta_neuron_S4[outs[o]]; } delta_bias_S4[i] += diff; } return true; } bool CNN::Backward_S2() { init_variable(delta_neuron_S2, 0.0, num_neuron_S2_CNN); init_variable(delta_weight_C3, 0.0, len_weight_C3_CNN); init_variable(delta_bias_C3, 0.0, len_bias_C3_CNN); /*for (int i = 0; i < num_map_S2_CNN; i++) {//////////////// int addr1 = width_kernel_conv_CNN * height_kernel_conv_CNN * num_map_C3_CNN * i; int addr2 = width_kernel_conv_CNN * height_kernel_conv_CNN * i; for (int j = 0; j < num_map_C3_CNN; j++) { const float* weight_c3 = &weight_C3[0] + addr1 + j * width_kernel_conv_CNN * height_kernel_conv_CNN; const float* delta_c3 = &delta_neuron_C3[0] + width_image_C3_CNN * height_image_C3_CNN * j; float* delta_s2 = &delta_neuron_S2[0] + addr2; for (int y = 0; y < height_image_C3_CNN; y++) { for (int x = 0; x < width_image_C3_CNN; x++) { const float* weight_c3_ = weight_c3; const float delta_c3_ = delta_c3[y * width_image_C3_CNN + x]; float* delta_s2_ = delta_s2 + y * width_kernel_conv_CNN + x; for (int m = 0; m < height_kernel_conv_CNN; m++) { for (int n = 0; n < width_kernel_conv_CNN; n++) { delta_s2_[m * width_kernel_conv_CNN + n] += weight_c3_[m * width_kernel_conv_CNN + n] * delta_c3_; } } } } } } for (int i = 0; i < num_neuron_S2_CNN; i++) { delta_neuron_S2[i] *= activation_function_tanh_derivative(neuron_S2[i]); } for (int i = 0; i < num_map_S2_CNN; i++) {////////////////// int addr1 = width_kernel_conv_CNN * height_kernel_conv_CNN * i; for (int j = 0; j < num_map_C3_CNN; j++) { int addr2 = width_kernel_conv_CNN * height_kernel_conv_CNN * i * j; float* delta_weight_c3 = &delta_weight_C3[0] + addr2; for (int y = 0; y < height_kernel_conv_CNN; y++) { for (int x = 0; x < width_kernel_conv_CNN; x++) { float dst = 0; const float* neuron_s2 = &neuron_S2[0] + addr1 + y * width_kernel_conv_CNN + x; const float* delta_c3 = &delta_neuron_C3[0] + width_image_C3_CNN * height_image_C3_CNN * j; for (int m = 0; m < height_image_C3_CNN; m++) { dst += dot_product(neuron_s2 + m * width_kernel_conv_CNN, delta_c3 + y * width_image_C3_CNN, width_image_C3_CNN); } delta_weight_c3[y * width_kernel_conv_CNN + x] += dst; } } } } for (int i = 0; i < num_map_C3_CNN; i++) { const float* delta = &delta_neuron_C3[0] + width_image_C3_CNN * height_image_C3_CNN * i; //delta_bias_C3[i] += std::accumulate(delta, delta + width_image_C3_CNN * height_image_C3_CNN, (float)0.0); for (int y = 0; y < height_image_C3_CNN; y++) { for (int x = 0; x < width_image_C3_CNN; x++) { delta_bias_C3[i] += delta[y * width_image_C3_CNN + x]; } } }*/ // propagate delta to previous layer for (int inc = 0; inc < num_map_S2_CNN; inc++) { for (int outc = 0; outc < num_map_C3_CNN; outc++) { int addr1 = get_index(0, 0, num_map_S2_CNN * outc + inc, width_kernel_conv_CNN, height_kernel_conv_CNN, num_map_S2_CNN * num_map_C3_CNN); int addr2 = get_index(0, 0, outc, width_image_C3_CNN, height_image_C3_CNN, num_map_C3_CNN); int addr3 = get_index(0, 0, inc, width_image_S2_CNN, height_image_S2_CNN, num_map_S2_CNN); const float *pw = &weight_C3[0] + addr1; const float *pdelta_src = &delta_neuron_C3[0] + addr2;; float* pdelta_dst = &delta_neuron_S2[0] + addr3; for (int y = 0; y < height_image_C3_CNN; y++) { for (int x = 0; x < width_image_C3_CNN; x++) { const float* ppw = pw; const float ppdelta_src = pdelta_src[y * width_image_C3_CNN + x]; float* ppdelta_dst = pdelta_dst + y * width_image_S2_CNN + x; for (int wy = 0; wy < height_kernel_conv_CNN; wy++) { for (int wx = 0; wx < width_kernel_conv_CNN; wx++) { ppdelta_dst[wy * width_image_S2_CNN + wx] += *ppw++ * ppdelta_src; } } } } } } for (int i = 0; i < num_neuron_S2_CNN; i++) { delta_neuron_S2[i] *= activation_function_tanh_derivative(neuron_S2[i]); } // accumulate dw for (int inc = 0; inc < num_map_S2_CNN; inc++) { for (int outc = 0; outc < num_map_C3_CNN; outc++) { for (int wy = 0; wy < height_kernel_conv_CNN; wy++) { for (int wx = 0; wx < width_kernel_conv_CNN; wx++) { int addr1 = get_index(wx, wy, inc, width_image_S2_CNN, height_image_S2_CNN, num_map_S2_CNN); int addr2 = get_index(0, 0, outc, width_image_C3_CNN, height_image_C3_CNN, num_map_C3_CNN); int addr3 = get_index(wx, wy, num_map_S2_CNN * outc + inc, width_kernel_conv_CNN, height_kernel_conv_CNN, num_map_S2_CNN * num_map_C3_CNN); float dst = 0.0; const float* prevo = &neuron_S2[0] + addr1; const float* delta = &delta_neuron_C3[0] + addr2; for (int y = 0; y < height_image_C3_CNN; y++) { dst += dot_product(prevo + y * width_image_S2_CNN, delta + y * width_image_C3_CNN, width_image_C3_CNN); } delta_weight_C3[addr3] += dst; } } } } // accumulate db for (int outc = 0; outc < len_bias_C3_CNN; outc++) { int addr1 = get_index(0, 0, outc, width_image_C3_CNN, height_image_C3_CNN, num_map_C3_CNN); const float* delta = &delta_neuron_C3[0] + addr1; for (int y = 0; y < height_image_C3_CNN; y++) { for (int x = 0; x < width_image_C3_CNN; x++) { delta_bias_C3[outc] += delta[y * width_image_C3_CNN + x]; } } } return true; } bool CNN::Backward_C1() { init_variable(delta_neuron_C1, 0.0, num_neuron_C1_CNN); init_variable(delta_weight_S2, 0.0, len_weight_S2_CNN); init_variable(delta_bias_S2, 0.0, len_bias_S2_CNN); float scale_factor = 1.0 / (width_kernel_pooling_CNN * height_kernel_pooling_CNN); /*for (int i = 0; i < num_map_C1_CNN; i++) { int addr1 = width_image_S2_CNN * height_image_S2_CNN * i; int addr2 = width_image_C1_CNN * height_image_C1_CNN * i; const float* delta_s2 = &delta_neuron_S2[0] + addr1; float* delta_c1 = &delta_neuron_C1[0] + addr2; const float* neuron_c1 = &neuron_C1[0] + addr2; for (int y = 0; y < height_image_C1_CNN; y++) { for (int x = 0; x < width_image_C1_CNN; x++) { float delta = 0.0; int index = width_image_S2_CNN * (y / height_kernel_pooling_CNN) + x / width_kernel_pooling_CNN; delta = weight_S2[i] * delta_s2[index]; delta_c1[y * width_image_C1_CNN + x] = delta * scale_factor * activation_function_tanh_derivative(neuron_c1[y * width_image_C1_CNN + x]); } } } for (int i = 0; i < len_weight_S2_CNN; i++) { int addr1 = width_image_C1_CNN * height_image_C1_CNN * i; int addr2 = width_image_S2_CNN * height_image_S2_CNN * i; const float* neuron_c1 = &neuron_C1[0] + addr1; const float* delta_s2 = &delta_neuron_S2[0] + addr2; float diff = 0.0; for (int y = 0; y < height_image_C1_CNN; y++) { for (int x = 0; x < width_image_C1_CNN; x++) { int index = y / height_kernel_pooling_CNN * height_image_S2_CNN + x / width_kernel_pooling_CNN; diff += neuron_c1[y * width_image_C1_CNN + x] * delta_s2[index]; } } delta_weight_S2[i] += diff * scale_factor; } for (int i = 0; i < len_bias_S2_CNN; i++) { int addr1 = width_image_S2_CNN * height_image_S2_CNN * i; const float* delta_s2 = &delta_neuron_S2[0] + addr1; float diff = 0; for (int y = 0; y < height_image_S2_CNN; y++) { for (int x = 0; x < width_image_S2_CNN; x++) { diff += delta_s2[y * width_image_S2_CNN + x]; } } delta_bias_S2[i] += diff; }*/ assert(in2wo_C1.size() == num_neuron_C1_CNN); assert(weight2io_C1.size() == len_weight_S2_CNN); assert(bias2out_C1.size() == len_bias_S2_CNN); for (int i = 0; i < num_neuron_C1_CNN; i++) { const wo_connections& connections = in2wo_C1[i]; float delta = 0.0; for (int j = 0; j < connections.size(); j++) { delta += weight_S2[connections[j].first] * delta_neuron_S2[connections[j].second]; } delta_neuron_C1[i] = delta * scale_factor * activation_function_tanh_derivative(neuron_C1[i]); } for (int i = 0; i < len_weight_S2_CNN; i++) { const io_connections& connections = weight2io_C1[i]; float diff = 0.0; for (int j = 0; j < connections.size(); j++) { diff += neuron_C1[connections[j].first] * delta_neuron_S2[connections[j].second]; } delta_weight_S2[i] += diff * scale_factor; } for (int i = 0; i < len_bias_S2_CNN; i++) { const std::vector<int>& outs = bias2out_C1[i]; float diff = 0; for (int o = 0; o < outs.size(); o++) { diff += delta_neuron_S2[outs[o]]; } delta_bias_S2[i] += diff; } return true; } bool CNN::Backward_input() { init_variable(delta_neuron_input, 0.0, num_neuron_input_CNN); init_variable(delta_weight_C1, 0.0, len_weight_C1_CNN); init_variable(delta_bias_C1, 0.0, len_bias_C1_CNN); /*for (int i = 0; i < num_map_input_CNN; i++) {/////////////////// int addr1 = width_kernel_conv_CNN * height_kernel_conv_CNN * num_map_C1_CNN * i; int addr2 = width_image_input_CNN * height_image_input_CNN * i; for (int j = 0; j < num_map_C1_CNN; j++) { const float* weight_c1 = &weight_C1[0] + addr1 + j * width_kernel_conv_CNN * height_kernel_conv_CNN; const float* delta_c1 = &delta_neuron_C1[0] + width_image_C1_CNN * height_image_C1_CNN * j; float* delta_input_ = &delta_neuron_input[0] + addr2; for (int y = 0; y < height_image_C1_CNN; y++) { for (int x = 0; x < width_image_C1_CNN; x++) { const float* weight_c1_ = weight_c1; const float delta_c1_ = delta_c1[y * width_image_C1_CNN + x]; float* delta_input_0 = delta_input_ + y * width_image_C1_CNN + x; for (int m = 0; m < height_kernel_conv_CNN; m++) { for (int n = 0; n < width_kernel_conv_CNN; n++) { delta_input_0[m * width_image_input_CNN + n] += weight_c1_[m * width_kernel_conv_CNN + n] * delta_c1_; } } } } } } for (int i = 0; i < num_neuron_input_CNN; i++) { delta_neuron_input[i] *= activation_function_identity_derivative(data_single_image[i]); } for (int i = 0; i < num_map_input_CNN; i++) {///////////// int addr1 = width_image_input_CNN * height_image_input_CNN * i; for (int j = 0; j < num_map_C1_CNN; j++) { int addr2 = width_kernel_conv_CNN * height_kernel_conv_CNN * i * j; float* delta_weight_c1 = &delta_weight_C1[0] + addr2; for (int y = 0; y < height_kernel_conv_CNN; y++) { for (int x = 0; x < width_kernel_conv_CNN; x++) { float dst = 0; const float* neuron_input_ = data_single_image + addr1 + y * width_image_input_CNN + x; const float* delta_c1 = &delta_neuron_C1[0] + width_image_C1_CNN * height_image_C1_CNN * j; for (int m = 0; m < height_image_C1_CNN; m++) { dst += dot_product(neuron_input_ + m * width_kernel_conv_CNN, delta_c1 + y * width_image_C1_CNN, width_image_C1_CNN); } delta_weight_c1[y * width_kernel_conv_CNN + x] += dst; } } } } for (int i = 0; i < num_map_C1_CNN; i++) { const float* delta = &delta_neuron_C1[0] + width_image_C1_CNN * height_image_C1_CNN * i; //delta_bias_C1[i] += std::accumulate(delta, delta + width_image_C1_CNN * height_image_C1_CNN, (float)0.0); for (int y = 0; y < height_image_C1_CNN; y++) { for (int x = 0; x < width_image_C1_CNN; x++) { delta_bias_C1[i] += delta[y * width_image_C1_CNN + x]; } } }*/ // propagate delta to previous layer for (int inc = 0; inc < num_map_input_CNN; inc++) { for (int outc = 0; outc < num_map_C1_CNN; outc++) { int addr1 = get_index(0, 0, num_map_input_CNN * outc + inc, width_kernel_conv_CNN, height_kernel_conv_CNN, num_map_C1_CNN); int addr2 = get_index(0, 0, outc, width_image_C1_CNN, height_image_C1_CNN, num_map_C1_CNN); int addr3 = get_index(0, 0, inc, width_image_input_CNN, height_image_input_CNN, num_map_input_CNN); const float* pw = &weight_C1[0] + addr1; const float* pdelta_src = &delta_neuron_C1[0] + addr2; float* pdelta_dst = &delta_neuron_input[0] + addr3; for (int y = 0; y < height_image_C1_CNN; y++) { for (int x = 0; x < width_image_C1_CNN; x++) { const float* ppw = pw; const float ppdelta_src = pdelta_src[y * width_image_C1_CNN + x]; float* ppdelta_dst = pdelta_dst + y * width_image_input_CNN + x; for (int wy = 0; wy < height_kernel_conv_CNN; wy++) { for (int wx = 0; wx < width_kernel_conv_CNN; wx++) { ppdelta_dst[wy * width_image_input_CNN + wx] += *ppw++ * ppdelta_src; } } } } } } for (int i = 0; i < num_neuron_input_CNN; i++) { delta_neuron_input[i] *= activation_function_identity_derivative(data_single_image[i]/*neuron_input[i]*/); } // accumulate dw for (int inc = 0; inc < num_map_input_CNN; inc++) { for (int outc = 0; outc < num_map_C1_CNN; outc++) { for (int wy = 0; wy < height_kernel_conv_CNN; wy++) { for (int wx = 0; wx < width_kernel_conv_CNN; wx++) { int addr1 = get_index(wx, wy, inc, width_image_input_CNN, height_image_input_CNN, num_map_input_CNN); int addr2 = get_index(0, 0, outc, width_image_C1_CNN, height_image_C1_CNN, num_map_C1_CNN); int addr3 = get_index(wx, wy, num_map_input_CNN * outc + inc, width_kernel_conv_CNN, height_kernel_conv_CNN, num_map_C1_CNN); float dst = 0.0; const float* prevo = data_single_image + addr1;//&neuron_input[0] const float* delta = &delta_neuron_C1[0] + addr2; for (int y = 0; y < height_image_C1_CNN; y++) { dst += dot_product(prevo + y * width_image_input_CNN, delta + y * width_image_C1_CNN, width_image_C1_CNN); } delta_weight_C1[addr3] += dst; } } } } // accumulate db for (int outc = 0; outc < len_bias_C1_CNN; outc++) { int addr1 = get_index(0, 0, outc, width_image_C1_CNN, height_image_C1_CNN, num_map_C1_CNN); const float* delta = &delta_neuron_C1[0] + addr1; for (int y = 0; y < height_image_C1_CNN; y++) { for (int x = 0; x < width_image_C1_CNN; x++) { delta_bias_C1[outc] += delta[y * width_image_C1_CNN + x]; } } } return true; } void CNN::update_weights_bias(const float* delta, float* weight, int len) { for (int i = 0; i < len; i++) { float tmp = delta[i] * delta[i]; weight[i] -= learning_rate_CNN * delta[i] / (std::sqrt(tmp) + eps_CNN); } } bool CNN::UpdateWeights() { update_weights_bias(delta_weight_C1, weight_C1, len_weight_C1_CNN); update_weights_bias(delta_bias_C1, bias_C1, len_bias_C1_CNN); update_weights_bias(delta_weight_S2, weight_S2, len_weight_S2_CNN); update_weights_bias(delta_bias_S2, bias_S2, len_bias_S2_CNN); update_weights_bias(delta_weight_C3, weight_C3, len_weight_C3_CNN); update_weights_bias(delta_bias_C3, bias_C3, len_bias_C3_CNN); update_weights_bias(delta_weight_S4, weight_S4, len_weight_S4_CNN); update_weights_bias(delta_bias_S4, bias_S4, len_bias_S4_CNN); update_weights_bias(delta_weight_C5, weight_C5, len_weight_C5_CNN); update_weights_bias(delta_bias_C5, bias_C5, len_bias_C5_CNN); update_weights_bias(delta_weight_output, weight_output, len_weight_output_CNN); update_weights_bias(delta_bias_output, bias_output, len_bias_output_CNN); return true; } int CNN::predict(const unsigned char* data, int width, int height) { assert(data && width == width_image_input_CNN && height == height_image_input_CNN); const float scale_min = -1; const float scale_max = 1; float tmp[width_image_input_CNN * height_image_input_CNN]; for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { tmp[y * width + x] = (data[y * width + x] / 255.0) * (scale_max - scale_min) + scale_min; } } data_single_image = &tmp[0]; Forward_C1(); Forward_S2(); Forward_C3(); Forward_S4(); Forward_C5(); Forward_output(); int pos = -1; float max_value = -9999.0; for (int i = 0; i < num_neuron_output_CNN; i++) { if (neuron_output[i] > max_value) { max_value = neuron_output[i]; pos = i; } } return pos; } bool CNN::readModelFile(const char* name) { FILE* fp = fopen(name, "rb"); if (fp == NULL) { return false; } int width_image_input =0; int height_image_input = 0; int width_image_C1 = 0; int height_image_C1 = 0; int width_image_S2 = 0; int height_image_S2 = 0; int width_image_C3 = 0; int height_image_C3 = 0; int width_image_S4 = 0; int height_image_S4 = 0; int width_image_C5 = 0; int height_image_C5 = 0; int width_image_output = 0; int height_image_output = 0; int width_kernel_conv = 0; int height_kernel_conv = 0; int width_kernel_pooling = 0; int height_kernel_pooling = 0; int num_map_input = 0; int num_map_C1 = 0; int num_map_S2 = 0; int num_map_C3 = 0; int num_map_S4 = 0; int num_map_C5 = 0; int num_map_output = 0; int len_weight_C1 = 0; int len_bias_C1 = 0; int len_weight_S2 = 0; int len_bias_S2 = 0; int len_weight_C3 = 0; int len_bias_C3 = 0; int len_weight_S4 = 0; int len_bias_S4 = 0; int len_weight_C5 = 0; int len_bias_C5 = 0; int len_weight_output = 0; int len_bias_output = 0; int num_neuron_input = 0; int num_neuron_C1 = 0; int num_neuron_S2 = 0; int num_neuron_C3 = 0; int num_neuron_S4 = 0; int num_neuron_C5 = 0; int num_neuron_output = 0; fread(&width_image_input, sizeof(int), 1, fp); fread(&height_image_input, sizeof(int), 1, fp); fread(&width_image_C1, sizeof(int), 1, fp); fread(&height_image_C1, sizeof(int), 1, fp); fread(&width_image_S2, sizeof(int), 1, fp); fread(&height_image_S2, sizeof(int), 1, fp); fread(&width_image_C3, sizeof(int), 1, fp); fread(&height_image_C3, sizeof(int), 1, fp); fread(&width_image_S4, sizeof(int), 1, fp); fread(&height_image_S4, sizeof(int), 1, fp); fread(&width_image_C5, sizeof(int), 1, fp); fread(&height_image_C5, sizeof(int), 1, fp); fread(&width_image_output, sizeof(int), 1, fp); fread(&height_image_output, sizeof(int), 1, fp); fread(&width_kernel_conv, sizeof(int), 1, fp); fread(&height_kernel_conv, sizeof(int), 1, fp); fread(&width_kernel_pooling, sizeof(int), 1, fp); fread(&height_kernel_pooling, sizeof(int), 1, fp); fread(&num_map_input, sizeof(int), 1, fp); fread(&num_map_C1, sizeof(int), 1, fp); fread(&num_map_S2, sizeof(int), 1, fp); fread(&num_map_C3, sizeof(int), 1, fp); fread(&num_map_S4, sizeof(int), 1, fp); fread(&num_map_C5, sizeof(int), 1, fp); fread(&num_map_output, sizeof(int), 1, fp); fread(&len_weight_C1, sizeof(int), 1, fp); fread(&len_bias_C1, sizeof(int), 1, fp); fread(&len_weight_S2, sizeof(int), 1, fp); fread(&len_bias_S2, sizeof(int), 1, fp); fread(&len_weight_C3, sizeof(int), 1, fp); fread(&len_bias_C3, sizeof(int), 1, fp); fread(&len_weight_S4, sizeof(int), 1, fp); fread(&len_bias_S4, sizeof(int), 1, fp); fread(&len_weight_C5, sizeof(int), 1, fp); fread(&len_bias_C5, sizeof(int), 1, fp); fread(&len_weight_output, sizeof(int), 1, fp); fread(&len_bias_output, sizeof(int), 1, fp); fread(&num_neuron_input, sizeof(int), 1, fp); fread(&num_neuron_C1, sizeof(int), 1, fp); fread(&num_neuron_S2, sizeof(int), 1, fp); fread(&num_neuron_C3, sizeof(int), 1, fp); fread(&num_neuron_S4, sizeof(int), 1, fp); fread(&num_neuron_C5, sizeof(int), 1, fp); fread(&num_neuron_output, sizeof(int), 1, fp); fread(weight_C1, sizeof(weight_C1), 1, fp); fread(bias_C1, sizeof(bias_C1), 1, fp); fread(weight_S2, sizeof(weight_S2), 1, fp); fread(bias_S2, sizeof(bias_S2), 1, fp); fread(weight_C3, sizeof(weight_C3), 1, fp); fread(bias_C3, sizeof(bias_C3), 1, fp); fread(weight_S4, sizeof(weight_S4), 1, fp); fread(bias_S4, sizeof(bias_S4), 1, fp); fread(weight_C5, sizeof(weight_C5), 1, fp); fread(bias_C5, sizeof(bias_C5), 1, fp); fread(weight_output, sizeof(weight_output), 1, fp); fread(bias_output, sizeof(bias_output), 1, fp); fflush(fp); fclose(fp); out2wi_S2.clear(); out2bias_S2.clear(); out2wi_S4.clear(); out2bias_S4.clear(); calc_out2wi(width_image_C1_CNN, height_image_C1_CNN, width_image_S2_CNN, height_image_S2_CNN, num_map_S2_CNN, out2wi_S2); calc_out2bias(width_image_S2_CNN, height_image_S2_CNN, num_map_S2_CNN, out2bias_S2); calc_out2wi(width_image_C3_CNN, height_image_C3_CNN, width_image_S4_CNN, height_image_S4_CNN, num_map_S4_CNN, out2wi_S4); calc_out2bias(width_image_S4_CNN, height_image_S4_CNN, num_map_S4_CNN, out2bias_S4); return true; } bool CNN::saveModelFile(const char* name) { FILE* fp = fopen(name, "wb"); if (fp == NULL) { return false; } int width_image_input = width_image_input_CNN; int height_image_input = height_image_input_CNN; int width_image_C1 = width_image_C1_CNN; int height_image_C1 = height_image_C1_CNN; int width_image_S2 = width_image_S2_CNN; int height_image_S2 = height_image_S2_CNN; int width_image_C3 = width_image_C3_CNN; int height_image_C3 = height_image_C3_CNN; int width_image_S4 = width_image_S4_CNN; int height_image_S4 = height_image_S4_CNN; int width_image_C5 = width_image_C5_CNN; int height_image_C5 = height_image_C5_CNN; int width_image_output = width_image_output_CNN; int height_image_output = height_image_output_CNN; int width_kernel_conv = width_kernel_conv_CNN; int height_kernel_conv = height_kernel_conv_CNN; int width_kernel_pooling = width_kernel_pooling_CNN; int height_kernel_pooling = height_kernel_pooling_CNN; int num_map_input = num_map_input_CNN; int num_map_C1 = num_map_C1_CNN; int num_map_S2 = num_map_S2_CNN; int num_map_C3 = num_map_C3_CNN; int num_map_S4 = num_map_S4_CNN; int num_map_C5 = num_map_C5_CNN; int num_map_output = num_map_output_CNN; int len_weight_C1 = len_weight_C1_CNN; int len_bias_C1 = len_bias_C1_CNN; int len_weight_S2 = len_weight_S2_CNN; int len_bias_S2 = len_bias_S2_CNN; int len_weight_C3 = len_weight_C3_CNN; int len_bias_C3 = len_bias_C3_CNN; int len_weight_S4 = len_weight_S4_CNN; int len_bias_S4 = len_bias_S4_CNN; int len_weight_C5 = len_weight_C5_CNN; int len_bias_C5 = len_bias_C5_CNN; int len_weight_output = len_weight_output_CNN; int len_bias_output = len_bias_output_CNN; int num_neuron_input = num_neuron_input_CNN; int num_neuron_C1 = num_neuron_C1_CNN; int num_neuron_S2 = num_neuron_S2_CNN; int num_neuron_C3 = num_neuron_C3_CNN; int num_neuron_S4 = num_neuron_S4_CNN; int num_neuron_C5 = num_neuron_C5_CNN; int num_neuron_output = num_neuron_output_CNN; fwrite(&width_image_input, sizeof(int), 1, fp); fwrite(&height_image_input, sizeof(int), 1, fp); fwrite(&width_image_C1, sizeof(int), 1, fp); fwrite(&height_image_C1, sizeof(int), 1, fp); fwrite(&width_image_S2, sizeof(int), 1, fp); fwrite(&height_image_S2, sizeof(int), 1, fp); fwrite(&width_image_C3, sizeof(int), 1, fp); fwrite(&height_image_C3, sizeof(int), 1, fp); fwrite(&width_image_S4, sizeof(int), 1, fp); fwrite(&height_image_S4, sizeof(int), 1, fp); fwrite(&width_image_C5, sizeof(int), 1, fp); fwrite(&height_image_C5, sizeof(int), 1, fp); fwrite(&width_image_output, sizeof(int), 1, fp); fwrite(&height_image_output, sizeof(int), 1, fp); fwrite(&width_kernel_conv, sizeof(int), 1, fp); fwrite(&height_kernel_conv, sizeof(int), 1, fp); fwrite(&width_kernel_pooling, sizeof(int), 1, fp); fwrite(&height_kernel_pooling, sizeof(int), 1, fp); fwrite(&num_map_input, sizeof(int), 1, fp); fwrite(&num_map_C1, sizeof(int), 1, fp); fwrite(&num_map_S2, sizeof(int), 1, fp); fwrite(&num_map_C3, sizeof(int), 1, fp); fwrite(&num_map_S4, sizeof(int), 1, fp); fwrite(&num_map_C5, sizeof(int), 1, fp); fwrite(&num_map_output, sizeof(int), 1, fp); fwrite(&len_weight_C1, sizeof(int), 1, fp); fwrite(&len_bias_C1, sizeof(int), 1, fp); fwrite(&len_weight_S2, sizeof(int), 1, fp); fwrite(&len_bias_S2, sizeof(int), 1, fp); fwrite(&len_weight_C3, sizeof(int), 1, fp); fwrite(&len_bias_C3, sizeof(int), 1, fp); fwrite(&len_weight_S4, sizeof(int), 1, fp); fwrite(&len_bias_S4, sizeof(int), 1, fp); fwrite(&len_weight_C5, sizeof(int), 1, fp); fwrite(&len_bias_C5, sizeof(int), 1, fp); fwrite(&len_weight_output, sizeof(int), 1, fp); fwrite(&len_bias_output, sizeof(int), 1, fp); fwrite(&num_neuron_input, sizeof(int), 1, fp); fwrite(&num_neuron_C1, sizeof(int), 1, fp); fwrite(&num_neuron_S2, sizeof(int), 1, fp); fwrite(&num_neuron_C3, sizeof(int), 1, fp); fwrite(&num_neuron_S4, sizeof(int), 1, fp); fwrite(&num_neuron_C5, sizeof(int), 1, fp); fwrite(&num_neuron_output, sizeof(int), 1, fp); fwrite(weight_C1, sizeof(weight_C1), 1, fp); fwrite(bias_C1, sizeof(bias_C1), 1, fp); fwrite(weight_S2, sizeof(weight_S2), 1, fp); fwrite(bias_S2, sizeof(bias_S2), 1, fp); fwrite(weight_C3, sizeof(weight_C3), 1, fp); fwrite(bias_C3, sizeof(bias_C3), 1, fp); fwrite(weight_S4, sizeof(weight_S4), 1, fp); fwrite(bias_S4, sizeof(bias_S4), 1, fp); fwrite(weight_C5, sizeof(weight_C5), 1, fp); fwrite(bias_C5, sizeof(bias_C5), 1, fp); fwrite(weight_output, sizeof(weight_output), 1, fp); fwrite(bias_output, sizeof(bias_output), 1, fp); fflush(fp); fclose(fp); return true; } float CNN::test() { int count_accuracy = 0; for (int num = 0; num < num_patterns_test_CNN; num++) { data_single_image = data_input_test + num * num_neuron_input_CNN; data_single_label = data_output_test + num * num_neuron_output_CNN; Forward_C1(); Forward_S2(); Forward_C3(); Forward_S4(); Forward_C5(); Forward_output(); int pos_t = -1; int pos_y = -2; float max_value_t = -9999.0; float max_value_y = -9999.0; for (int i = 0; i < num_neuron_output_CNN; i++) { if (neuron_output[i] > max_value_y) { max_value_y = neuron_output[i]; pos_y = i; } if (data_single_label[i] > max_value_t) { max_value_t = data_single_label[i]; pos_t = i; } } if (pos_y == pos_t) { ++count_accuracy; } Sleep(1); } //std::cout << "count_accuracy: " << count_accuracy << std::endl; return (count_accuracy * 1.0 / num_patterns_test_CNN); } }以上代码主要仿照tiny-cnn的实现,测试发现,识别率较低,应该是某些地方有bug,后面在进行调试。
GitHub:https://github.com/fengbingchun/NN
标签:
原文地址:http://blog.csdn.net/fengbingchun/article/details/50814710