码迷,mamicode.com
首页 > 其他好文 > 详细

让CNN跑起来,以下是调参的所有秘密

时间:2016-03-09 10:57:06      阅读:166      评论:0      收藏:0      [点我收藏+]

标签:

知乎上看到的
- 收集高质量标注数据

- 输入输出数据做好归一化,以防出现数值问题,方法就是主成分分析啥的。

- 参数初始化很重要。太小了,参数根本走不动。一般权重参数0.01均方差,0均值的高斯分布是万能的,不行就试更大的。偏差参数全0即可。

- 用SGD ,minibatch size 128。或者更小size ,但那样吞吐量变小,计算效率变低。

- 用带momentum的SGD,二阶方法不用也罢。

- 梯度更新的步长很重要。一般0.1是个万能数值。调参可改进结果,具体做法是人肉监督:用另外的验证集观察测试错误率,一旦不降了,步长减半甚至更多。

- 梯度归一化:除以minibatch size ,这样就不显式依赖minibatch size

- 限制权重参数的最大值防止跑飞。一般最大行范数不超过2或者4,否则同比收缩到这个值。

- 梯度大致应该总是只改变参数的千分之一,偏离这个数字太远的,调之。

- dropout一定要用

- relu一定要用

授人以鱼不如授人与渔。cnn调参,最好的参考论文就是那篇nips2012用cnn做imagenet的,没有之一。dropout那篇文章可作为最佳补充。

让CNN跑起来,以下是调参的所有秘密

标签:

原文地址:http://www.cnblogs.com/chunmei/p/5256909.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!