码迷,mamicode.com
首页 > 其他好文 > 详细

最小二乘与最大似然估计之间的关系

时间:2016-03-09 12:44:28      阅读:136      评论:0      收藏:0      [点我收藏+]

标签:

          1、结论

              测量误差(测量)服从高斯分布的情况下, 最小二乘法等价于极大似然估计。

          2、最大似然估计

                              技术分享     技术分享

              最大似然估计就是通过求解最大的(1)式得到参数技术分享,其中 L 函数称为参数技术分享的似然函数,是一个概率分布函数。

              似然估计的思想是:测量值 X 是服从概率分布的,求概率模型中的参数,使得在假设的分布下获得该组测量出现概率最大:

              例如:通过一次测量得到1.9、1.9、2.0、2.1、2.0、1.9、1.5、2.5、2.0、2.0,

                      通过直觉我们发现这组测量比较符合期望为2的高斯分布。

                      要不然,为什么取值都在2附近呢,为啥测量数据中没有(很少)1.0、5.0呢?也就是说,可以认为我的这些测量

                      是符合某个概率分布的(这个例子中为高斯分布),测量值中得到2附近值的概率比较大。

               例如:一个箱子里有红球和黑球,通过10次放回抽取实验得到的结果为:8次黑球、2次红球。问箱子中黑球的比例?

                      这个例子中箱子里只有红球和黑球,可以假设黑球的比例为 p ,那么红球的概率为(1-p),

                      那么10次实验中8次黑球、两次红球的概率为:技术分享

最小二乘与最大似然估计之间的关系

标签:

原文地址:http://www.cnblogs.com/monoSLAM/p/5257589.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!