标签:
Description
Input
Output
Sample Input
3 1 2 2 3 1 3
output
2
1 2
题意为有若干组巡逻的保安可以搭配,输入第一行为搭配的数目,下面n行为可以匹配的关系,问最多可以形成多少对巡逻的保安,保证其中的任何一个保安只在其中的一个分组中,输出第一行为可以搭配的组数,下面若干
行为可以搭配的各组情况
#include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> #include <vector> #include <queue> #include <set> #include <map> #include <string> #include <math.h> #include <stdlib.h> #include <time.h> using namespace std; const int MAXN = 250; int N; //点的个数,点的编号从1到N bool Graph[MAXN][MAXN]; int Match[MAXN]; bool InQueue[MAXN],InPath[MAXN],InBlossom[MAXN]; int Head,Tail; int Queue[MAXN]; int Start,Finish; int NewBase; int Father[MAXN],Base[MAXN]; int Count;//匹配数,匹配对数是Count/2 void CreateGraph() { int u,v; memset(Graph,false,sizeof(Graph)); scanf("%d",&N); while(scanf("%d%d",&u,&v) == 2) { Graph[u][v] = Graph[v][u] = true; } } void Push(int u) { Queue[Tail] = u; Tail++; InQueue[u] = true; } int Pop() { int res = Queue[Head]; Head++; return res; } int FindCommonAncestor(int u,int v) { memset(InPath,false,sizeof(InPath)); while(true) { u = Base[u]; InPath[u] = true; if(u == Start) break; u = Father[Match[u]]; } while(true) { v = Base[v]; if(InPath[v])break; v = Father[Match[v]]; } return v; } void ResetTrace(int u) { int v; while(Base[u] != NewBase) { v = Match[u]; InBlossom[Base[u]] = InBlossom[Base[v]] = true; u = Father[v]; if(Base[u] != NewBase) Father[u] = v; } } void BloosomContract(int u,int v) { NewBase = FindCommonAncestor(u,v); memset(InBlossom,false,sizeof(InBlossom)); ResetTrace(u); ResetTrace(v); if(Base[u] != NewBase) Father[u] = v; if(Base[v] != NewBase) Father[v] = u; for(int tu = 1; tu <= N; tu++) if(InBlossom[Base[tu]]) { Base[tu] = NewBase; if(!InQueue[tu]) Push(tu); } } void FindAugmentingPath() { memset(InQueue,false,sizeof(InQueue)); memset(Father,0,sizeof(Father)); for(int i = 1; i <= N; i++) Base[i] = i; Head = Tail = 1; Push(Start); Finish = 0; while(Head < Tail) { int u = Pop(); for(int v = 1; v <= N; v++) if(Graph[u][v] && (Base[u] != Base[v]) && (Match[u] != v)) { if((v == Start) || ((Match[v] > 0) && Father[Match[v]] > 0)) BloosomContract(u,v); else if(Father[v] == 0) { Father[v] = u; if(Match[v] > 0) Push(Match[v]); else { Finish = v; return; } } } } } void AugmentPath() { int u,v,w; u = Finish; while(u > 0) { v = Father[u]; w = Match[v]; Match[v] = u; Match[u] = v; u = w; } } void Edmonds() { memset(Match,0,sizeof(Match)); for(int u = 1; u <= N; u++) if(Match[u] == 0) { Start = u; FindAugmentingPath(); if(Finish > 0)AugmentPath(); } } void PrintMatch() { Count = 0; for(int u = 1; u <= N; u++) if(Match[u] > 0) Count++; printf("%d\n",Count); for(int u = 1; u <= N; u++) if(u < Match[u]) printf("%d %d\n",u,Match[u]); } int main() { CreateGraph();//建图 Edmonds();//进行匹配 PrintMatch();//输出匹配数和匹配 return 0; }
Description
Input
Output
Sample Input
4 4 1 3 2 3 2 4 3 1 6 6 1 2 3 2 3 4 5 2 5 4 5 6
Sample Output
题意为输入第一行为两个整数nm,n代表有n个打算参加跳舞的女孩,m代表可一匹配的队伍,
我们想要最大化可以组合的队伍,输出最大化的组合之后,其他没有必要的组合,输出他们的序号
#include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> #include <vector> #include <queue> #include <set> #include <map> #include <string> #include <math.h> #include <stdlib.h> #include <time.h> using namespace std; const int MAXN = 50; int N; //点的个数,点的编号从1到N bool Graph[MAXN][MAXN]; int Match[MAXN]; bool InQueue[MAXN],InPath[MAXN],InBlossom[MAXN]; int Head,Tail; int Queue[MAXN]; int Start,Finish; int NewBase; int Father[MAXN],Base[MAXN]; int Count; void Push(int u) { Queue[Tail] = u; Tail++; InQueue[u] = true; } int Pop() { int res = Queue[Head]; Head++; return res; } int FindCommonAncestor(int u,int v) { memset(InPath,false,sizeof(InPath)); while(true) { u = Base[u]; InPath[u] = true; if(u == Start) break; u = Father[Match[u]]; } while(true) { v = Base[v]; if(InPath[v])break; v = Father[Match[v]]; } return v; } void ResetTrace(int u) { int v; while(Base[u] != NewBase) { v = Match[u]; InBlossom[Base[u]] = InBlossom[Base[v]] = true; u = Father[v]; if(Base[u] != NewBase) Father[u] = v; } } void BloosomContract(int u,int v) { NewBase = FindCommonAncestor(u,v); memset(InBlossom,false,sizeof(InBlossom)); ResetTrace(u); ResetTrace(v); if(Base[u] != NewBase) Father[u] = v; if(Base[v] != NewBase) Father[v] = u; for(int tu = 1; tu <= N; tu++) if(InBlossom[Base[tu]]) { Base[tu] = NewBase; if(!InQueue[tu]) Push(tu); } } void FindAugmentingPath() { memset(InQueue,false,sizeof(InQueue)); memset(Father,0,sizeof(Father)); for(int i = 1;i <= N;i++) Base[i] = i; Head = Tail = 1; Push(Start); Finish = 0; while(Head < Tail) { int u = Pop(); for(int v = 1; v <= N; v++) if(Graph[u][v] && (Base[u] != Base[v]) && (Match[u] != v)) { if((v == Start) || ((Match[v] > 0) && Father[Match[v]] > 0)) BloosomContract(u,v); else if(Father[v] == 0) { Father[v] = u; if(Match[v] > 0) Push(Match[v]); else { Finish = v; return; } } } } } void AugmentPath() { int u,v,w; u = Finish; while(u > 0) { v = Father[u]; w = Match[v]; Match[v] = u; Match[u] = v; u = w; } } void Edmonds() { memset(Match,0,sizeof(Match)); for(int u = 1; u <= N; u++) if(Match[u] == 0) { Start = u; FindAugmentingPath(); if(Finish > 0)AugmentPath(); } } int getMatch() { Edmonds(); Count = 0; for(int u = 1; u <= N;u++) if(Match[u] > 0) Count++; return Count/2; } bool g[MAXN][MAXN]; pair<int,int>p[150]; int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); int m; while(scanf("%d%d",&N,&m)==2) { memset(g,false,sizeof(g)); memset(Graph,false,sizeof(Graph)); int u,v; for(int i = 1;i <= m;i++) { scanf("%d%d",&u,&v); p[i] = make_pair(u,v); g[u][v] = true; g[v][u] = true; Graph[u][v] = true; Graph[v][u] = true; } int cnt0 = getMatch(); //cout<<cnt0<<endl; vector<int>ans; for(int i = 1;i <= m;i++) { u = p[i].first; v = p[i].second; memcpy(Graph,g,sizeof(g)); for(int j = 1;j <= N;j++) Graph[j][u] = Graph[u][j] = Graph[j][v] = Graph[v][j] = false; int cnt = getMatch(); //cout<<cnt<<endl; if(cnt < cnt0-1) ans.push_back(i); } int sz = ans.size(); printf("%d\n",sz); for(int i = 0;i < sz;i++) { printf("%d",ans[i]); if(i < sz-1)printf(" "); } printf("\n"); } return 0; }
标签:
原文地址:http://www.cnblogs.com/13224ACMer/p/5266637.html