标签:
n个灯围成一圈, 1左边是n。 有两种状态, 1是亮, 0是不亮。 如果一个灯, 它左边的灯是亮的, 那么下一时刻这个灯就要改变状态, 1变为0, 0变为1。 给出初始状态和时间t, 问t时刻每个灯的状态是什么。
ai = (a(i-1)+ai)%2, 根据这个构建矩阵。
/* 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 */ // 对这个矩阵进行快速幂, 结果与初始状态相乘就好。 #include <iostream> #include <vector> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <map> #include <set> #include <string> #include <queue> #include <stack> #include <bitset> using namespace std; #define pb(x) push_back(x) #define ll long long #define mk(x, y) make_pair(x, y) #define lson l, m, rt<<1 #define mem(a) memset(a, 0, sizeof(a)) #define rson m+1, r, rt<<1|1 #define mem1(a) memset(a, -1, sizeof(a)) #define mem2(a) memset(a, 0x3f, sizeof(a)) #define rep(i, n, a) for(int i = a; i<n; i++) #define fi first #define se second typedef pair<int, int> pll; const double PI = acos(-1.0); const double eps = 1e-8; const int mod = 1e9+7; const int inf = 1061109567; const int dir[][2] = { {-1, 0}, {1, 0}, {0, -1}, {0, 1} }; int n; struct Matrix { int a[102][102]; Matrix() { mem(a); } }; Matrix operator * (Matrix a, Matrix b) { Matrix c; for(int i = 0; i<n; i++) { for(int j = 0; j<n; j++) { for(int k = 0; k<n; k++) { c.a[i][j] += a.a[i][k]*b.a[k][j]; c.a[i][j] %= 2; } } } return c; } Matrix operator ^ (Matrix a, ll b) { Matrix tmp; for(int i = 0; i<n; i++) tmp.a[i][i] = 1; while(b) { if(b&1) tmp = tmp*a; a = a*a; b>>=1; } return tmp; } int main() { int m; string s; while(cin>>m) { cin>>s; n = s.size(); Matrix tmp; for(int i = 0; i<n; i++) { tmp.a[i][i] = 1; tmp.a[i][(i-1+n)%n] = 1; } Matrix b = tmp^m; Matrix a; for(int i = 0; i<s.size(); i++) { a.a[i][0] = s[i]-‘0‘; } Matrix c = b*a; for(int i = 0; i<s.size(); i++) { printf("%d", c.a[i][0]); } cout<<endl; } return 0; }
hdu 2276 Kiki & Little Kiki 2 矩阵快速幂
标签:
原文地址:http://www.cnblogs.com/yohaha/p/5267931.html