码迷,mamicode.com
首页 > 其他好文 > 详细

016_笼统概述MapReduce执行流程结合wordcount程序

时间:2016-03-15 09:41:35      阅读:266      评论:0      收藏:0      [点我收藏+]

标签:

一、map任务处理

1 、读取输入文件内容,解析成key、value对。对输入文件的每一行,解析成key、value对。每一个键值对调用一次map函数。

2 、写自己的逻辑,对输入的key、value处理,转换成新的key、value输出。
3、 对输出的key、value进行分区。
4 、对不同分区的数据,按照key进行排序、分组。相同key的value放到
一个集合中。
5 、(可选)分组后的数据进行归约。

二、reduce任务处理

1、对多个map任务的输出,按照不同的分区,通过网络copy到不同的reduce节点。
2、对多个map任务的输出进行合并、排序。写reduce函数自己的逻辑,对输入的key、value处理,转换成新的key、value输出。
3、把reduce的输出保存到文件中。

技术分享

三、JobTracker和TaskTracke及相关的任务分工

JobTracker 负责接收用户提交的作业,负责启动、跟踪任务执行。
TaskTracke 负责执行由JobTracker分配的任务,管理各个任务
在每个节点上的执行情况。
Job ,用户的每一个计算请求,称为一个作业。
Task ,每一个作业,都需要拆分开了,交由多个服务器来完成,拆分出来的执行单位,就称为任务。
Task分为MapTask和ReduceTask两种,分别进行Map操作和Reduce操作,依据Job设置的Map类和Reduce类

技术分享

四、WordCount  处理过程

1、将文件拆分成splits,由于测试用的文件较小,所以每个文件为一个split,并将文件按行分割形成<key,value>对,下图所示。这一步由MapReduce框架自动完成,其中偏移量(即key值)包括了回车和换行所占的字符数2个(Windows/Linux环境不同)。

 技术分享

2、将分割好的<key,value>对交给用户定义的map方法进行处理,生成新的<key,value>对,下图所示。

技术分享

 

3、得到map方法输出的<key,value>对后,Mapper会将它们按照key值进行排序,并执行Combine过程,将key至相同value值累加,得到Mapper的最终输出结果。下图所示:

技术分享

4、Reducer先对从Mapper接收的数据进行排序,再交由用户自定义的reduce方法进行处理,得到新的<key,value>对,并作为WordCount的输出结果,下图所示。

技术分享

五、MR  作业运行流程分析

技术分享
1、在客户端启动一个作业;
2、向JobTracker请求一个Job ID;
3、将运行作业所需要的资源文件复制到HDFS上,包括MapReduce程序打包的JAR文件、配置文件和客户端计算所得的输入划分信息。这些文件都存放在JobTracker专门为该作业创建的文件夹中。文件夹名为该作业的Job ID。JAR文件默认会有10个副本(mapred.submit.replication属性控制);输入划分信息告诉了JobTracker应该为这个作业启动多少个map任务等信息;
4、JobTracker接收到作业后,将其放在一个作业队列里,等待作业调度器对其进行调度(这里是不是很像微机中的进程调度呢,呵呵),当作业调度器根据自己的调度算法调度到该作业时,会根据输入划分信息为每个划分创建一个map任务,并将map任务分配给TaskTracker执行。对于map和reduce任务,TaskTracker根据主机核的数量和内存的大小有固定数量的map槽和reduce槽。这里需要强调的是:map任务不是随随便便地分配给某个TaskTracker的,
这里有个概念叫:数据本地化(Data-Local)。意思是:将map任务分配给含有该map处理的数据块的TaskTracker上,同时将程序JAR包复制到该TaskTracker上来运行,这叫“运算移动,数据不移动”。而分配reduce任务时并不考虑数据本地化。
5、TaskTracker每隔一段时间会给JobTracker发送一个心跳,告诉JobTracker它依然在运行,同时心跳中还携带着很多的信息,比如当前map任务完成的进度等信息。当JobTracker收到作业的最后一个任务完成信息时,便把该作业设置成“成功”。当JobClient查询状态时,它将得知任务已完成,便显示一条消息给用户。

016_笼统概述MapReduce执行流程结合wordcount程序

标签:

原文地址:http://www.cnblogs.com/xiangyangzhu/p/5278095.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!