码迷,mamicode.com
首页 > 其他好文 > 详细

SGU 132. Another Chocolate Maniac

时间:2014-07-27 10:28:22      阅读:243      评论:0      收藏:0      [点我收藏+]

标签:

题意:有1*2的小方块,在n*m (n <= 70, m <= 7)的棋盘内有一些点不能覆盖,要求将方块最少数量地放入棋盘,使得空格子两两不相邻。

m那么小,很明显是状态压缩DP对吧。

我们用f[i][j]表示在第i行,覆盖前一部分后当前状态为j的最小花费,转移是很显然的。重点是状态之间的关系如何确定,否则无法进行转移。考虑预处理出融洽的两个状态。用1表示在当前位放置了一块方块,我们从0枚举到(1 << m) - 1,我们要判断两个决策是否融洽,但是问题来了:棋盘上有不可覆盖点!!其实无所谓吧,我们可以尝试不预处理,而是在转移时枚举状态。复杂度:O(n*s*s)。好像没了??2维数组真的够了么???当然不行啊!因为一个方块可以同时影响两行的状态,所以我们要改进状态表示,用三维数组吧。。。然后被细节问题坑成狗。空间卡的死,需要用滚动数组优化。dfs实现时,其实只要考虑好各种情况就行了。

bubuko.com,布布扣
  1  //{HEADS
  2 #define FILE_IN_OUT
  3 #include <cstdio>
  4 #include <cstring>
  5 #include <cstdlib>
  6 #include <cmath>
  7 #include <ctime>
  8 #include <algorithm>
  9 #include <iostream>
 10 #include <fstream>
 11 #include <vector>
 12 #include <stack>
 13 #include <queue>
 14 #include <deque>
 15 #include <map>
 16 #include <set>
 17 #include <bitset>
 18 #include <complex>
 19 #include <string>
 20 #define REP(i, j) for (int i = 1; i <= j; ++i)
 21 #define REPI(i, j, k) for (int i = j; i <= k; ++i)
 22 #define REPD(i, j) for (int i = j; 0 < i; --i)
 23 #define STLR(i, con) for (int i = 0, sz = con.size(); i < sz; ++i)
 24 #define STLRD(i, con) for (int i = con.size() - 1; 0 <= i; --i)
 25 #define CLR(s) memset(s, 0, sizeof s)
 26 #define SET(s, v) memset(s, v, sizeof s)
 27 #define mp make_pair
 28 #define pb push_back
 29 #define PL(k, n) for (int i = 1; i <= n; ++i) { cout << k[i] << ‘ ‘; } cout << endl
 30 #define PS(k) STLR(i, k) { cout << k[i] << ‘ ‘; } cout << endl
 31 using namespace std;
 32 void FILE_INIT(string FILE_NAME) {
 33 #ifdef FILE_IN_OUT
 34 #ifndef ONLINE_JUDGE 
 35     freopen((FILE_NAME + ".in").c_str(), "r", stdin);
 36     freopen((FILE_NAME + ".out").c_str(), "w", stdout);
 37 #endif
 38 #endif
 39 }
 40 typedef long long LL;
 41 typedef double DB;
 42 typedef pair<int, int> i_pair;
 43 const int INF = 0x3f3f3f3f;
 44 const LL INFL = 0x3f3f3f3f3f3f3f3f;
 45 //}
 46 
 47 char gchar() {
 48     char ret = getchar();
 49     for(; ret != . && ret != *; ret = getchar());
 50     return ret;
 51 }
 52 
 53 const int maxn = 74;
 54 const int maxs = (1 << 7) + 3;
 55 int G[maxn];
 56 int n, m, now, last;
 57 
 58 LL f[2][maxs][maxs];
 59 int Snum;
 60 
 61 //最好玩的部分开始!!
 62 void dfs(int col, int pre_s, int now_s, int next_s, int cnt, LL f_last) {
 63 f(0 < col && !(pre_s & (1 << (col - 1))) && !(now_s & (1 << (col - 1)))) {
 64         return ;
 65     }
 66     if(1 < col && !(now_s & (1 << (col - 1))) && !(now_s & (1 << (col - 2)))) {
 67         return ;
 68     }
 69     if(col == m) {
 70         f[now][now_s][next_s] = min(f[now][now_s][next_s], f_last + cnt);
 71         return ;
 72     }
 73     dfs(col + 1, pre_s, now_s, next_s, cnt, f_last);
 74     if(!(now_s & (1 << (col))) && !(next_s & (1 << (col)))) {
 75         dfs(col + 1, pre_s, now_s | (1 << (col)), next_s | (1 << (col)), cnt + 1, f_last);
 76     }
 77     if(col + 1 < m && !(now_s & (1 << col)) && !(now_s & (1 << (col + 1)))) {
 78         dfs(col + 1, pre_s, now_s | (1 << (col)) | (1 << (col + 1)), next_s, cnt + 1, f_last);
 79     }
 80 }
 81 int main() {
 82     FILE_INIT("132");
 83 
 84     scanf("%d%d", &n, &m)
 85     for(int i = 1; i <= n; ++i) {
 86         for(int j =  0; j < m; ++j) {
 87             char c = gchar();
 88             if(c == *) {
 89                 G[i] += 1 << j;
 90             }
 91         }
 92     }
 93     Snum = (1 << m) - 1;
 94     now = 0, last = 1;
 95     memset(f[now], INF, sizeof f[now]);
 96     f[0][Snum][G[1]] = 0;
 97     for(int i = 1; i <= n; ++i) {
 98         swap(now, last);
 99         memset(f[now], INF, sizeof f[now]);
100         for(int j = 0; j <= Snum; ++j) {
101             for(int k = 0; k <= Snum; ++k) {
102                 if(f[last][j][k] < INFL) {
103                     dfs(0, j, k, G[i + 1], 0, f[last][j][k]);
104                 }
105             }
106         }
107     }
108     LL ans = INFL;
109     for(int i = 0; i <= Snum; ++i) {
110         ans = min(ans, f[now][i][0]);
111     }
112     printf("%lld\n", ans);
113     return 0;
114 }
View Code

送测试数据:

bubuko.com,布布扣
3 2
..
..
**

4 4
.**.
*..*
*..*
.**.

7 7
.......
.......
.......
...*...
.......
.......
.......

8 1
.
.
.
.
.
.
.
.

1 1
.

3 3
*.*
...
*.*

3 7
*.*.*..
..*...*
*...*.*

2 7
.....*.
**..*.*

1 7
*.*.*..

2 2
*.
.*

70 7
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......

10 3
..*
..*
..*
..*
..*
*..
*..
*..
*..
*..

10 4
*..*
*..*
*..*
*..*
*..*
*..*
*..*
*..*
*..*
*..*

10 3
..*
..*
..*
..*
..*
..*
..*
..*
..*
..*

10 2
..
..
..
..
..
..
..
..
..
..

5 5
.*..*
*....
..**.
**.*.
.**..
INOUT
bubuko.com,布布扣
2

2

16

3

0

1

3

2

1

0

164

7

7

7

7

4
OUTPUT

 

SGU 132. Another Chocolate Maniac

标签:

原文地址:http://www.cnblogs.com/hzf-sbit/p/3870652.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!