标签:
Description
Input
Output
Sample Input
5 4 1 2 40 1 4 20 2 4 20 2 3 30 3 4 10
Sample Output
50
Source
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<limits.h>
using namespace std;
const int maxn=220;
int n,m;
int r[maxn][maxn];
int pre[maxn];
int visit[maxn];
bool bfs(int s,int t)
{
queue<int>q;
memset(pre,-1,sizeof(pre));
memset(visit,false,sizeof(visit));
pre[s]=s;
visit[s]=true;
q.push(s);
int p;
while(!q.empty())
{
p=q.front();
q.pop();
for(int i=1;i<=n;i++)
{
if(r[p][i]>0&&!visit[i])
{
pre[i]=p;
visit[i]=true;
if(i==t)
return true;
q.push(i);
}
}
}
return false;
}
int solve(int s,int t)
{
int d,maxflow=0;
while(bfs(s,t))
{
d=INT_MAX;
for(int i=t;i!=s;i=pre[i])
d=min(d,r[pre[i]][i]);
for(int i=t;i!=s;i=pre[i])
{
r[pre[i]][i]-=d;
r[i][pre[i]]+=d;
}
maxflow+=d;
}
return maxflow;
}
int main()
{
while(cin>>m>>n)
{
memset(r,0,sizeof(r));
int s,e,c;
for(int i=0;i<m;i++)
{
cin>>s>>e>>c;
r[s][e]+=c;
}
cout<<solve(1,n)<<endl;
}
return 0;
}
POJ 1273 Drainage Ditches(网络流,最大流)
标签:
原文地址:http://blog.csdn.net/u013582254/article/details/38167147