7 4 3 4 1 3 0 0 0
NO 3
解题思路:
当S为奇数时显然不满足直接pass设当前三个杯子中可口可乐的容量分别为x,y,z,则下一个状态可以分为三大类且最多六种方法:
x->y,x->z,y->x,y->z,z->x,z->y;所以枚举六个状态,宽搜 第一类由x扩展,前提x>0,第二类由y扩展,前提y>0,第三类由z扩展,前提z>0
代码:
#include <iostream> #include<cstring> #include<cstdio> #include<queue> #include<cmath> using namespace std; int S,N,M; const int maxn=101; bool flag[maxn][maxn][maxn]; struct node{ int x,y,z,step; node(int a=0,int b=0,int c=0,int ste=0):x(a),y(b),z(c),step(ste){} }; int bfs(node s){ int ans=S/2; queue<node>mq; mq.push(s); flag[s.x][s.y][s.z]=true; while(!mq.empty()){ node head=mq.front(); mq.pop(); int x=head.x,y=head.y,z=head.z; int step=head.step+1; //cout<<x<<" "<<y<<" "<<z<<" "<<head.step<<endl; if((x==ans&&y==ans)||(y==ans&&z==ans)||(x==ans&&z==ans)){ return head.step; } else { if(x>0){ if(y!=N&&z!=M){ int tx1=x+y-N;//可乐由x倒向y,y最多可接收N-y,所以x变成x-(N-y),y变成N if(!flag[tx1][N][z]){ mq.push(node(tx1,N,z,step)); flag[tx1][N][z]=true; } int tx2=x+z-M;//同理x倒向z; if(!flag[tx2][y][M]){ mq.push(node(tx2,y,M,step)); flag[tx2][y][M]=true; } } } if(y>0){ if(z!=M){ int ty1=y+z-M;//可乐由y倒向z, ty1>=0表示倒完后仍有剩余,反之表示完全倒入z if(ty1>=0&&!flag[x][ty1][M]){ flag[x][ty1][M]=true; mq.push(node(x,ty1,M,step)); } else if(ty1<0&&!flag[x][0][z+y]){ flag[x][0][z+y]=true; mq.push(node(x,0,z+y,step)); } if(!flag[x+y][0][z]){ flag[x+y][0][z]=true; mq.push(node(x+y,0,z,step)); } } } if(z>0){ if(y!=N){ int tz1=z+y-N;//同上 if(tz1>=0&&!flag[x][N][tz1]){ mq.push(node(x,N,tz1,step)); flag[x][N][tz1]=true; } else if(tz1<0&&!flag[x][y+z][0]){ mq.push(node(x,y+z,0,step)); flag[x][y+z][0]=true; } if(!flag[x+z][y][0]){ mq.push(node(x+z,y,0,step)); flag[x+z][y][0]=true; } } } } } return -1; } int main() { //freopen("in.txt","r",stdin); while(scanf("%d%d%d",&S,&N,&M)!=EOF){ if(S==0&&N==0&&M==0)break; if(S%2==1){ printf("NO\n"); continue; } memset(flag,0,sizeof(flag)); int ans=bfs(node(S,0,0)); if(ans==-1)printf("NO\n"); else printf("%d\n",ans); } return 0; }
原文地址:http://blog.csdn.net/jiangx1994/article/details/38150195