码迷,mamicode.com
首页 > 其他好文 > 详细

Panel(面板)数据结构

时间:2016-03-27 01:37:26      阅读:744      评论:0      收藏:0      [点我收藏+]

标签:

Pandas库中除了Series, DataFrame这两种常用数据结构外,还有一种Panel数据结构,通常可以用一个由DataFrame对象组成的字典或者一个三维数组来创建Panel对象。

1 # -*- coding: utf-8 -*-
2 """
3 Created on Sat Mar 26 18:01:05 2016
4 
5 @author: Jeremy
6 """
7 import numpy as np
8 from pandas import Series, DataFrame, Panel
9 import pandas as pd
1 #用一个包含DataFrame的字典来创建Panel对象
2 df = np.random.binomial(100, 0.95,(9,2))
3 dm = np.random.binomial(100, 0.95,(12,2))
4 dff = DataFrame(df, columns = [Physics, Math])
5 dfm = DataFrame(dm, columns = [Physics, Math])
6 score_panel = Panel({Girls:dff, Boys:dfm})

print()方法来查看创建的Panel对象score_panel信息:Panel对象有Item axis, Major_axis axis, Minor_axis axis 三个轴,并给出了三个轴的维度和数据大小信息:2*12*2。

>>> print(score_panel)
<class pandas.core.panel.Panel>
Dimensions: 2 (items) x 12 (major_axis) x 2 (minor_axis)
Items axis: Boys to Girls
Major_axis axis: 0 to 11
Minor_axis axis: Physics to Math

 

Panel对象索引和二维数组及数据框类似,默认第一个轴为Item axis,可以直接对其进行索引:

1 #提取Girls组学生的物理和数学成绩
2 score_panel[Girls]
    Physics  Math
0        91    96
1        97    98
2        98    97
3        93    97
4        95    97
5        97    95
6        95    95
7        90    96
8        92    96
9       NaN   NaN
10      NaN   NaN
11      NaN   NaN


基于ix的标签索引被推广到三个维度,因此我们在三个维度上提取我们想要的数据,例如:

1 ‘‘‘
2 找出数学成绩不小于93的女生的物理和数学成绩
3 并返回一个数据框DataFrame
4 ‘‘‘
5 score_panel.ix[Girls, score_panel.Girls.Math >= 93, :]
   Physics  Math
0       91    96
1       97    98
2       98    97
3       93    97
4       95    97
5       97    95
6       95    95
7       90    96
8       92    96

下面我们通过建立一个包含多只股票不同时期的股票价格数据的Panel对象来介绍一个Panel对象方法。

1 import pandas.io.data as web
2 pdata = Panel(dict((symbol, web.DataReader(symbol, data_source = yahoo,
3 start = 1/1/2009, end = 6/1/2012)) for symbol in [AAPL, GOOG, MSFT, DELL]))
4 print(pdata)
<class pandas.core.panel.Panel>
Dimensions: 4 (items) x 868 (major_axis) x 6 (minor_axis)
Items axis: AAPL to MSFT
Major_axis axis: 2009-01-02 00:00:00 to 2012-06-01 00:00:00
Minor_axis axis: Open to Adj Close
1 #提取’2012-06-01‘四支股票的行情数据
2 pdata.ix[:, 2012-06-01, :]
    AAPL            DELL            GOOG             MSFT
Open       5.691600e+02        12.15000      571.790972        28.760000
High       5.726500e+02        12.30000      572.650996        28.959999
Low        5.605200e+02        12.04500      568.350996        28.440001
Close      5.609900e+02        12.07000      570.981000        28.450001
Volume     1.302469e+08  19397600.00000  6138700.000000  56634300.000000
Adj Close  7.421812e+01        11.67592      285.205295        25.598227
1 #提取四支股票‘2012-05-30‘至‘2012-06-01‘的收盘价格(Close)数据
2 pdata.ix[:,2012-05-30:2012-06-01, Close]
         AAPL   DELL        GOOG       MSFT
Date                                                
2012-05-30  579.169998  12.56  588.230992  29.340000
2012-05-31  577.730019  12.33  580.860990  29.190001
2012-06-01  560.989983  12.07  570.981000  28.450001
1 #提取四支股票‘2012-05-30‘至‘2012-06-01‘的行情数据
2 pdata.ix[:, 2012-05-30:2012-06-01, :]
<class pandas.core.panel.Panel>
Dimensions: 4 (items) x 3 (major_axis) x 6 (minor_axis)
Items axis: AAPL to MSFT
Major_axis axis: 2012-05-30 00:00:00 to 2012-06-01 00:00:00
Minor_axis axis: Open to Adj Close

这里返回的结果与上面不同的原因是这里我们返回的结果任然是一个Panel对象,上面提取的行情数据只包括了收盘价格,第三个维度(坐标轴)消失了,结果返回的是一个二维的数据框DataFrame对象,如果我们希望像DataFrame一样看到整个完整的数据信息,可以用to_frame()方法,它将面板数据以一种“堆积式”的DataFrame形式呈现:

1 #以DataFrame形式呈现面板数据
2 pdata.ix[:, 2012-05-30:2012-06-01, :].to_frame()
  AAPL            DELL            GOOG  Date       minor                                                     
2012-05-30 Open       5.692000e+02        12.59000      588.161028   
           High       5.799900e+02        12.70000      591.901014   
           Low        5.665600e+02        12.46000      583.530999   
           Close      5.791700e+02        12.56000      588.230992   
           Volume     1.323574e+08  19787800.00000  3827600.000000   
           Adj Close  7.662330e+01        12.14992      293.821674   
2012-05-31 Open       5.807400e+02        12.53000      588.720982   
           High       5.815000e+02        12.54000      590.001032   
           Low        5.714600e+02        12.33000      579.001013   
           Close      5.777300e+02        12.33000      580.860990   
           Volume     1.229186e+08  19955600.00000  5958800.000000   
           Adj Close  7.643280e+01        11.92743      290.140354   
2012-06-01 Open       5.691600e+02        12.15000      571.790972   
           High       5.726500e+02        12.30000      572.650996   
           Low        5.605200e+02        12.04500      568.350996   
           Close      5.609900e+02        12.07000      570.981000   
           Volume     1.302469e+08  19397600.00000  6138700.000000   
           Adj Close  7.421812e+01        11.67592      285.205295   

                                 MSFT  
Date       minor                       
2012-05-30 Open             29.350000  
           High             29.480000  
           Low              29.120001  
           Close            29.340000  
           Volume     41585500.000000  
           Adj Close        26.399015  
2012-05-31 Open             29.299999  
           High             29.420000  
           Low              28.940001  
           Close            29.190001  
           Volume     39134000.000000  
           Adj Close        26.264051  
2012-06-01 Open             28.760000  
           High             28.959999  
           Low              28.440001  
           Close            28.450001  
           Volume     56634300.000000  
           Adj Close        25.598227  

DataFrame有一个相应的to_panel()方法,它是to_frame()的逆运算:

1 stacked = pdata.ix[:, 2012-05-30:2012-06-01, :].to_frame()
2 stacked.to_panel()
<class pandas.core.panel.Panel>
Dimensions: 4 (items) x 3 (major_axis) x 6 (minor_axis)
Items axis: AAPL to MSFT
Major_axis axis: 2012-05-30 00:00:00 to 2012-06-01 00:00:00
Minor_axis axis: Open to Adj Close

总结:Panel对象的一个好处是我们可以通过建立一个Panel对象来保存多层次/多维度的数据,当我们需要任意维度的数据来进行建模分析时,随时可以提取出一个Series或者DataFrame。
参考资料:

《利用python进行数据分析》 Wes McKinney著

Computational Statistics in Python : http://people.duke.edu/~ccc14/sta-663/index.html

 

   

   

   

   

Panel(面板)数据结构

标签:

原文地址:http://www.cnblogs.com/JeremyTin/p/5324536.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!