码迷,mamicode.com
首页 > 其他好文 > 详细

Canny边缘检测

时间:2016-03-27 01:53:10      阅读:195      评论:0      收藏:0      [点我收藏+]

标签:

        关于Canny图像边缘检测的原理,网上有很多介绍的资料,

其中一篇介绍得比较好的文章:http://blog.csdn.net/likezhaobin/article/details/6892176

大家可以参考一下。


----------------------少废话,上代码-------------------------------------------------

/*
 * CannyEdgeDetection.h
 *
 * 过客 && 386520874@qq.com && 2016.03.26
 *
*/

#ifndef __CANNY_EDGE_DETECTION_H__
#define __CANNY_EDGE_DETECTION_H__

#include <windows.h>
#include <vector>

//----canny边缘检测-----------
class CCannyEdgeDetection
{
public:
	CCannyEdgeDetection();
	~CCannyEdgeDetection();

public:
	int m_guid_index; //保存的图片格式,0-ImageFormatBMP,1-ImageFormatJPEG,2-ImageFormatPNG,3-ImageFormatGIF
	BITMAP m_bitmap;
	HBITMAP m_hBitmap;

public:
	//--------图片操作---------------
	int OpenImage(wchar_t* filename, BITMAP &bitmap, HBITMAP &hBitmap); //打开图片
	int SaveImage(wchar_t* filename, HBITMAP &hBitmap); //保存图片,针对位图句柄
	int SaveImage(wchar_t* filename, BITMAP &bitmap); //保存图片,针对内存中位图结果
	int CreateEmptyImage(BITMAP &bitmap, int width, int height, int bmBitsPixel); //在内存中创建一幅空白位图
	int ReleaseHandle(); //主动释放资源
	int ReleaseBitmap(BITMAP &bitmap); //主动释放资源

	int Canny(BITMAP &bitmap_src, BITMAP &bitmap_dst, double low_thresh, double high_thresh); //canny边缘检测
	int Sobel(BITMAP &bitmap_src, BITMAP &bitmap_dst, double low_thresh, double high_thresh); //Sobel图像一阶差分梯度
};

#endif //__CANNY_EDGE_DETECTION_H__

/*
 * CannyEdgeDetection.cpp
 *
 * 过客 && 386520874@qq.com && 2016.03.26
 *
*/

#define WINVER 0x0500 
#define _WIN32_WINNT 0x0500

//#include <windows.h>
#include <afx.h>
#include <atlimage.h>
#include <afxwin.h>

#include "CannyEdgeDetection.h"


CCannyEdgeDetection::CCannyEdgeDetection()
{
	m_guid_index = 2; //默认输出png
	m_hBitmap = NULL;
}


CCannyEdgeDetection::~CCannyEdgeDetection()
{
	if(m_hBitmap != NULL)
	{
		::DeleteObject(m_hBitmap);
		m_hBitmap = NULL;
	}
}


//--------图片操作---------------
int CCannyEdgeDetection::ReleaseHandle()
{
	if(m_hBitmap != NULL)
	{
		::DeleteObject(m_hBitmap);
		m_hBitmap = NULL;
	}

	return 1;
}


int CCannyEdgeDetection::ReleaseBitmap(BITMAP &bitmap)
{
	unsigned char* pBits = static_cast<unsigned char*>(bitmap.bmBits);

	if(pBits != NULL)
	{
		delete [] pBits; //释放用new申请的资源
		pBits = NULL;
		memset(&bitmap, 0, sizeof(BITMAP));
	}

	return 1;
}


int CCannyEdgeDetection::OpenImage(wchar_t* filename, BITMAP &bitmap, HBITMAP &hBitmap)
{
	CFileFind filefind;
	BOOL IsFileFind = filefind.FindFile(filename);
	if(!IsFileFind)
	{
//		printf("Error: Can not find file: %s;\n", filename);
		wchar_t err_str[200];
		wsprintf(err_str, _T("您打开的图片文件[%s]不存在!"), filename);
		MessageBox(NULL, err_str, _T("错误"), MB_OK|MB_ICONERROR);
		return 0;
	}

	//----------------------------------------
	CImage img;
	img.Load(filename);

	int width = img.GetWidth();
	int height = img.GetHeight();

	hBitmap = img.Detach(); //如果用Detach(),则CImage析构后,hBitmap仍可使用。

	int nBytes = ::GetObject(hBitmap, sizeof(BITMAP), &bitmap);

	return 1;
}


int CCannyEdgeDetection::SaveImage(wchar_t* filename, HBITMAP &hBitmap)
{
	GUID guid[4] =
	{
		Gdiplus::ImageFormatBMP,
		Gdiplus::ImageFormatJPEG,
		Gdiplus::ImageFormatPNG,
		Gdiplus::ImageFormatGIF
	};
	if(m_guid_index<0 || m_guid_index>3)
	{
		printf("Erorr: SaveImage: m_guid_index must in [0,3]\n");
	}

	CImage img;
	img.Attach(hBitmap);
	img.Save(filename, guid[m_guid_index]); //可以从guid看出,CImage的Save()实际上是通过GDI+实现的。
	hBitmap = img.Detach(); //如果用Detach(),则CImage析构后,hBitmap仍可使用。

	return 1;
}


int CCannyEdgeDetection::SaveImage(wchar_t* filename, BITMAP &bitmap)
{
	int width = bitmap.bmWidth;
	int height = bitmap.bmHeight;
	int biBitCount = bitmap.bmBitsPixel;
	RGBQUAD *pColorTable = NULL;

	int colorTablesize = 0; //颜色表大小,以字节为单位,灰度图像颜色表为1024字节,彩色图像颜色表大小为0
//	if(biBitCount == 8){colorTablesize=1024;}

//	int lineByte = (width * biBitCount/8+3)/4*4; //待存储图像数据每行字节数为4的倍数
	int lineByte = bitmap.bmWidthBytes; //待存储图像数据每行字节数为4的倍数

	int size_1 = sizeof(BITMAPFILEHEADER); // size_1 = 14
	int size_2 = sizeof(BITMAPINFOHEADER); // size_2 = 40
	int size_3 = lineByte * height; //计算位图尺寸

//	int bpp = bitmap.bmBitsPixel/8; //bpp代表通道的数目,一般 bpp = 3

	//--------------1. 位图文件头结构-----------------------------------------------------
	BITMAPFILEHEADER fileHead;

	fileHead.bfType = 0x4D42; //bmp类型
	fileHead.bfSize = size_1 + size_2 + colorTablesize + lineByte * height; //bfSize是图像文件4个组成部分之和
	fileHead.bfReserved1 = 0;
	fileHead.bfReserved2 = 0;
	fileHead.bfOffBits = 54 + colorTablesize; //bfOffBits是图像文件前3个部分所需空间之和

	//--------------2. 位图信息头结构-----------------------------------------------------
	BITMAPINFOHEADER head;

	head.biBitCount = biBitCount; // 8,24,32
	head.biClrImportant = 0;
	head.biClrUsed = 0;
	head.biCompression = 0; //BI_RGB = 0L
	head.biHeight = height;
	head.biPlanes = 1;
	head.biSize = 40;
	head.biSizeImage = lineByte * height;
	head.biWidth = width;
	head.biXPelsPerMeter = 0;
	head.biYPelsPerMeter = 0;

	//---------------3. 内存中的文件读写操作-------------------------------
	long file_size = fileHead.bfSize; //计算位图文件尺寸

	unsigned char* pBits = static_cast<unsigned char*>(bitmap.bmBits);

	HGLOBAL hMem = GlobalAlloc(GMEM_MOVEABLE|GMEM_ZEROINIT, file_size);
	if(hMem == NULL){printf("Erorr: GlobalAlloc: hMem == NULL\n");return 0;}
	unsigned char *pbuff = static_cast<unsigned char*>(GlobalLock(hMem)); // get the actual pointer for the HGLOBAL
	memcpy(pbuff, &fileHead, size_1); //内存复制
	pbuff += size_1;
	memcpy(pbuff, &head, size_2); //内存复制
	pbuff += size_2;
	memcpy(pbuff, pBits, size_3); //内存复制
	IStream *pStream = 0;
	HRESULT hr = CreateStreamOnHGlobal(hMem, TRUE, &pStream); //此函数是内存数据到文件流的关键API函数
	if(hr != S_OK)
	{
		printf("Erorr: CreateStreamOnHGlobal: hr != S_OK\n");
		return 0;
	}

	//--------------4. 将文件流数据正式保存到磁盘文件中----------------------------------------
	GUID guid[4] =
	{
		Gdiplus::ImageFormatBMP,
		Gdiplus::ImageFormatJPEG,
		Gdiplus::ImageFormatPNG,
		Gdiplus::ImageFormatGIF
	};
	if(m_guid_index<0 || m_guid_index>3)
	{
		printf("Erorr: SaveImage: m_guid_index must in [0,3]\n");
		return 0;
	}

	CImage img;
	img.Load(pStream);
	img.Save(filename, guid[m_guid_index]); //可以从guid看出,CImage的Save()实际上是通过GDI+实现的。
	img.Detach();
	img.Destroy();
	GlobalFree(hMem); //释放GlobalAlloc(...)申请的内存

	return 1;
}


/*-------------------在内存中创建一幅空白位图------------------------------
 *
 * 参数1: bitmap 返回的结果
 * 参数2: width 位图高度
 * 参数3: height 位图宽度
 * 参数4: bmBitsPixel 一个像素的字节大小,一般是24字节,也可以是32字节
 *
 * 过客 && 386520874@qq.com && 2014.12.26
*/
int CCannyEdgeDetection::CreateEmptyImage(BITMAP &bitmap, int width, int height, int bmBitsPixel)
{
//	bmBitsPixel = 32;

	bitmap.bmWidth = width;
	bitmap.bmHeight = height;
	bitmap.bmBitsPixel = bmBitsPixel;

	bitmap.bmType = 0;
	bitmap.bmPlanes = 1;

	bitmap.bmWidthBytes = (width * bmBitsPixel/8+3)/4*4;

	printf("CreateEmptyImage: [%d x %d] memory = %d bytes;\n", width, height, bitmap.bmHeight * bitmap.bmWidthBytes);

	unsigned char *pBits = new unsigned char[bitmap.bmHeight * bitmap.bmWidthBytes]; //在堆上申请
	if(pBits == NULL){printf("CreateEmptyImage: pBits == NULL\n");return 0;}
	memset(pBits, 0, sizeof(unsigned char) * bitmap.bmHeight * bitmap.bmWidthBytes); //初始化为黑色背景

	bitmap.bmBits = pBits;

	return 1;
}


/*-------------------图像的Canny边缘检测------------------------------
 * 算法原理:
 *     图像的Canny边缘检测算法,是一种理论和实际效果比较靠谱的算法,它
 *     大致有下面几个步骤:
 *     1. 将输入的RGB图像转换成单通道的灰度图像
 *     2. 计算灰度图像的一阶梯度,该算法选择Sobel算子计算dx和dy两个方向
 *        的梯度
 *     3. 对图像的梯度幅值进行非极大值抑制,这一步是Canny算法的独到之处
 *        经过这一步后,真正的边缘点会被暴露出来,并将其位置保存下来
 *     4. 双阈值检测:将保存下来的已确认为边缘的点,以每个点为中心,将
 *        相邻的8个像素由1变成2,即将曲线的轮廓进行不断的延伸。
 *
 *   Sobel算子模板:
 *            | -1  0  +1 |          | +1  +2  +1 |
 *       Sx = | -2  0  +2 |     Sy = |  0   0   0 |
 *            | -1  0  +1 |          | -1  -2  -1 |
 *
 * 函数名称: Canny(...)
 * 参数1: bitmap_src [in]输入的图像位图数据
 * 参数2: bitmap_dst [out]输出的图像位图数据
 * 参数3: low_thresh [in]低阈值,所有梯度幅值低于此值的点不认为是边缘点
 * 参数4: high_thresh [in]高阈值,经过非极大值抑制后,所有梯度幅值高于
 *                    此值的点认为是边缘点
 *
 * 过客 && 386520874@qq.com && 2015.03.27
*/
int CCannyEdgeDetection::Canny(BITMAP &bitmap_src, BITMAP &bitmap_dst, double low_thresh, double high_thresh)
{
	//-------------1. 输入参数检查-----------------------
	BITMAP bitmap1 = bitmap_src;
	unsigned char* pBits1 = static_cast<unsigned char*>(bitmap1.bmBits);
	int bpp1 = bitmap1.bmBitsPixel/8; //bpp代表通道的数目,一般 bpp = 3

	int width2 = bitmap1.bmWidth;
	int height2 = bitmap1.bmHeight;
	CreateEmptyImage(bitmap_dst, width2, height2, bitmap1.bmBitsPixel);
	int bpp2 = bitmap_dst.bmBitsPixel/8; //bpp代表通道的数目,一般 bpp = 3
	unsigned char* pBits2 = static_cast<unsigned char*>(bitmap_dst.bmBits);
	
	BITMAP bitmap2 = bitmap_dst;

	//-------------2. RGB转灰度-----------------------
	int* gray = new int[width2 * height2]; //保存灰度图像数据

	for(int y = 0; y < bitmap1.bmHeight; y++)
	{
		for(int x = 0; x < bitmap1.bmWidth; x++)
		{
			int B = pBits1[y * bitmap1.bmWidthBytes + x * bpp1 + 0]; //Blue
			int G = pBits1[y * bitmap1.bmWidthBytes + x * bpp1 + 1]; //Green
			int R = pBits1[y * bitmap1.bmWidthBytes + x * bpp1 + 2]; //Red

//			int A = R * 0.299 + G * 0.587 + B * 0.114; //一般RGB2Gray公式
			int A = R * 0.212671 + G * 0.715160 + B * 0.072169; //opencv的RGB2Gray公式 0.212671*R + 0.715160*G + 0.072169*B

			gray[y * width2 + x] = A;
		}
	}

	//-------------3. 计算灰度图像梯度幅值和方向-----------------------
	int* dx = new int[width2 * height2]; //x向偏导数
	int* dy = new int[width2 * height2]; //y向偏导数

	memset(dx, 0, sizeof(int) * width2 * height2);
	memset(dy, 0, sizeof(int) * width2 * height2);
	
	//利用Sobel算子,计算x,y方向的偏导数
	for(int y = 0; y < height2; y++)
	{
		for(int x = 0; x < width2; x++)
		{
			if(x < 1 || x >= width2 -1 || y < 1 || y >= height2 - 1){continue;} //3x3的算子,图像的4条边需要跳过
			
			dx[y * width2 + x] = -(gray[(y - 1) * width2 + (x - 1)] * 1 + gray[(y + 0) * width2 + (x - 1)] * 2 + gray[(y + 1) * width2 + (x - 1)] * 1)
				+ (gray[(y - 1) * width2 + (x + 1)] * 1 + gray[(y + 0) * width2 + (x + 1)] * 2 + gray[(y + 1) * width2 + (x + 1)] * 1);
			
			dy[y * width2 + x] = (gray[(y - 1) * width2 + (x - 1)] * 1 + gray[(y - 1) * width2 + (x + 0)] * 2 + gray[(y - 1) * width2 + (x + 1)] * 1)
				- (gray[(y + 1) * width2 + (x - 1)] * 1 + gray[(y + 1) * width2 + (x + 0)] * 2 + gray[(y + 1) * width2 + (x + 1)] * 1);
		}
	}

	//计算梯度幅值和梯度的方向
	//.......

	//-------------4. 非极大值抑制-----------------------
	//下面代码来自于opencv的canny.cpp修改版本
	bool L2gradient = false; //采用哪种梯度的计算公式
//	bool L2gradient = true; //采用哪种梯度的计算公式
//	const int cn = src.channels();
	const int cn = 1;
	int low = low_thresh;
	int high = high_thresh;

	typedef unsigned char uchar;

	ptrdiff_t mapstep = width2 + 2;
	//注意buffer是一个二维数组,总体来说有[3 + height]行,前面3行用来不断滚动的临时计算
	//和存储图像梯度|dx+dy|的幅值,后面[height]行中每个数组元素用来标记,图像中对应点是
	//否是边缘点信息,只有[0,1,2]三种值,
	//0-表示该像素可能是边缘
	//1-表示该像素不可能是边缘
	//2-表示该像素是边缘
	uchar * buffer = new uchar[(width2 + 2) * (height2 + 2) + cn * mapstep * 3 * sizeof(int)]; //存储边缘信息的数组
	
	int* mag_buf[3];
	mag_buf[0] = (int*)(uchar*)buffer;
	mag_buf[1] = mag_buf[0] + mapstep * cn;
	mag_buf[2] = mag_buf[1] + mapstep * cn;
	memset(mag_buf[0], 0, mapstep * sizeof(int));

	uchar* map = (uchar*)(mag_buf[2] + mapstep * cn);
	memset(map, 1, mapstep);
	memset(map + mapstep * (height2 + 1), 1, mapstep);

	int maxsize = max(1 << 10, width2 * height2 / 10); //栈stack用来存储标记为2的像素点指针,栈的最大尺寸为[width2 * height2]
	std::vector<uchar*> stack(maxsize);
	uchar **stack_top = &stack[0];
	uchar **stack_bottom = &stack[0];

	//----------------------------

	#define CANNY_PUSH(d)    *(d) = uchar(2), *stack_top++ = (d)
	#define CANNY_POP(d)     (d) = *--stack_top

	// calculate magnitude and angle of gradient, perform non-maxima suppression.
	// fill the map with one of the following values:
	//   0 - the pixel might belong to an edge,0-表示该像素可能是边缘
	//   1 - the pixel can not belong to an edge,1-表示该像素不可能是边缘
	//   2 - the pixel does belong to an edge,2-表示该像素是边缘
	for(int i = 0; i <= height2; i++) //遍历行
	{
		int* _norm = mag_buf[(i > 0) + 1] + 1;
		if(i < height2)
		{
			int* _dx = dx + i * width2;
			int* _dy = dy + i * width2;

			if(!L2gradient)
			{
				for(int j = 0; j < width2 * cn; j++)
				{
					_norm[j] = abs(_dx[j]) + abs(_dy[j]); //梯度的幅值 |G| = |dx| + |dy|,默认使用这个公式
				}
			}else
			{
				for(int j = 0; j < width2 * cn; j++)
				{
//					_norm[j] = _dx[j] * _dx[j] + _dy[j] * _dy[j]; //梯度的幅值 |G| = |dx|*|dx| + |dy|*|dy|
					_norm[j] = sqrt(1.0 * (_dx[j] * _dx[j] + _dy[j] * _dy[j])); //梯度的幅值 |G| = sqrt(|dx|*|dx| + |dy|*|dy|)
				}
			}

			if(cn > 1)
			{
				for(int j = 0, jn = 0; j < width2; ++j, jn += cn)
				{
					int maxIdx = jn;
					for(int k = 1; k < cn; ++k)
					{
						if(_norm[jn + k] > _norm[maxIdx]){maxIdx = jn + k;}
					}
					
					_norm[j] = _norm[maxIdx];
					_dx[j] = _dx[maxIdx];
					_dy[j] = _dy[maxIdx];
				}
			}
			_norm[-1] = _norm[width2] = 0;
		}else
		{
			memset(_norm - 1, 0, mapstep * sizeof(int));
		}

		// at the very beginning we do not have a complete ring
		// buffer of 3 magnitude rows for non-maxima suppression
		if (i == 0){continue;}

		uchar* _map = map + mapstep * i + 1;
		_map[-1] = _map[width2] = 1;

		int* _mag = mag_buf[1] + 1; // take the central row
		ptrdiff_t magstep1 = mag_buf[2] - mag_buf[1];
		ptrdiff_t magstep2 = mag_buf[0] - mag_buf[1];

		const int* _x = dx + (i - 1) * width2;
		const int* _y = dy + (i - 1) * width2;

		if((stack_top - stack_bottom) + width2 > maxsize)
		{
			int sz = (int)(stack_top - stack_bottom);
			maxsize = maxsize * 3 / 2;
			stack.resize(maxsize); //将栈空间扩大为原来的3/2=1.5倍
			stack_bottom = &stack[0];
			stack_top = stack_bottom + sz;
		}

		int prev_flag = 0;
		for(int j = 0; j < width2; j++) //遍历列
		{
			#define CANNY_SHIFT 15
			const int TG22 = (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5); //tan(PI/8)=0.41421356...

			double m = _mag[j];

			if(m > low)
			{
				int xs = _x[j];
				int ys = _y[j];
				int x = std::abs(xs);
				int y = std::abs(ys) << CANNY_SHIFT;

				double tg22x = x * TG22;

				if(y < tg22x) // PI/8 = 22.5度,tan(PI/8)
				{
					if(m > _mag[j-1] && m >= _mag[j+1]) goto __ocv_canny_push; //非极大值抑制:3x3模板,8邻域像素的水平方向
				}else
				{
					double tg67x = tg22x + (x << (CANNY_SHIFT+1));
					if(y > tg67x) // PI*3/8 = 67.5度,tan(PI*3/8)
					{
						if(m > _mag[j+magstep2] && m >= _mag[j+magstep1]) goto __ocv_canny_push; //非极大值抑制:3x3模板,8邻域像素的垂直方向
					}else
					{
						int s = (xs ^ ys) < 0 ? -1 : 1;
						if(m > _mag[j+magstep2-s] && m > _mag[j+magstep1+s]) goto __ocv_canny_push; //非极大值抑制:3x3模板,8邻域像素的两条45度对角线方向
					}
				}
			}
			prev_flag = 0;
			_map[j] = uchar(1); //1-表示该像素点不是边缘
			continue;
__ocv_canny_push:
			if (!prev_flag && m > high && _map[j-mapstep] != 2)
			{
				CANNY_PUSH(_map + j); //2-表示该像素是边缘,则将其弹入栈中
				prev_flag = 1;
			}else
			{
				_map[j] = 0; //0-表示该像素可能是边缘
			}
		}

		// scroll the ring buffer
		// 滚动交换保存梯度幅值的行
		_mag = mag_buf[0];
		mag_buf[0] = mag_buf[1];
		mag_buf[1] = mag_buf[2];
		mag_buf[2] = _mag;
	}

	//-------------5. 双阈值检测:将8个相邻的像素由1变成2----------------------------------
	// now track the edges (hysteresis thresholding)
	while(stack_top > stack_bottom)
	{
		uchar* m;
		if ((stack_top - stack_bottom) + 8 > maxsize)
		{
			int sz = (int)(stack_top - stack_bottom);
			maxsize = maxsize * 3 / 2;
			stack.resize(maxsize); //将栈空间扩大为原来的3/2=1.5倍
			stack_bottom = &stack[0];
			stack_top = stack_bottom + sz;
		}

		CANNY_POP(m);

		//因为栈中保存的都是边缘点像素,现在循环检测栈中所有边缘点的
		//周围8个像素是否被标记为0,如果是0,则认为该点也是边缘点,并
		//将其弹入栈中,可以看出这个栈的功能实现了递归函数的功能,直
		//到栈空为止,则结束循环。
		if(!m[-1])         CANNY_PUSH(m - 1);
		if(!m[1])          CANNY_PUSH(m + 1);
		if(!m[-mapstep-1]) CANNY_PUSH(m - mapstep - 1);
		if(!m[-mapstep])   CANNY_PUSH(m - mapstep);
		if(!m[-mapstep+1]) CANNY_PUSH(m - mapstep + 1);
		if(!m[mapstep-1])  CANNY_PUSH(m + mapstep - 1);
		if(!m[mapstep])    CANNY_PUSH(m + mapstep);
		if(!m[mapstep+1])  CANNY_PUSH(m + mapstep + 1);
	}

	//------------6. 保存算法结果到图片中----------------------
	// the final pass, form the final image
	const uchar* pmap = map + mapstep + 1;
	
	for(int y = 0; y < height2; y++)
	{
		for(int x = 0; x < width2; x++)
		{
			uchar _gray = (uchar)-(pmap[y * mapstep + x] >> 1); //因为pmap[]里面的值只有0,1,2三种,而2才是边缘像素点,所以,-(2 >> 1) = 255,即用白色表示边缘

			pBits2[y * bitmap2.bmWidthBytes + x * bpp2 + 0] = _gray;
			pBits2[y * bitmap2.bmWidthBytes + x * bpp2 + 1] = _gray;
			pBits2[y * bitmap2.bmWidthBytes + x * bpp2 + 2] = _gray;
		}
	}
	
	//------------------------------
	delete [] gray; gray = NULL;
	delete [] dx; dx = NULL;
	delete [] dy; dy = NULL;
	delete [] buffer; buffer = NULL;

	return 1;
}


/*-------------------Sobel图像一阶差分梯度边缘检测------------------------------
 * 算法原理:
 *
 *   Sobel算子模板:
 *            | -1  0  +1 |          | +1  +2  +1 |
 *       Sx = | -2  0  +2 |     Sy = |  0   0   0 |
 *            | -1  0  +1 |          | -1  -2  -1 |
 *
 * 函数名称: Canny(...)
 * 参数1: bitmap_src [in]输入的图像位图数据
 * 参数2: bitmap_dst [out]输出的图像位图数据
 * 参数3: low_thresh [in]低阈值,(暂时不使用该参数)
 * 参数4: high_thresh [in]高阈值,所有梯度幅值高于此值的点认为是边缘点
 *
 * 过客 && 386520874@qq.com && 2015.03.28
*/
int CCannyEdgeDetection::Sobel(BITMAP &bitmap_src, BITMAP &bitmap_dst, double low_thresh, double high_thresh)
{
	//-------------1. 输入参数检查-----------------------
	BITMAP bitmap1 = bitmap_src;
	unsigned char* pBits1 = static_cast<unsigned char*>(bitmap1.bmBits);
	int bpp1 = bitmap1.bmBitsPixel/8; //bpp代表通道的数目,一般 bpp = 3

	int width2 = bitmap1.bmWidth;
	int height2 = bitmap1.bmHeight;
	CreateEmptyImage(bitmap_dst, width2, height2, bitmap1.bmBitsPixel);
	int bpp2 = bitmap_dst.bmBitsPixel/8; //bpp代表通道的数目,一般 bpp = 3
	unsigned char* pBits2 = static_cast<unsigned char*>(bitmap_dst.bmBits);
	
	BITMAP bitmap2 = bitmap_dst;

	//-------------2. RGB转灰度-----------------------
	int* gray = new int[width2 * height2]; //保存灰度图像数据

	for(int y = 0; y < bitmap1.bmHeight; y++)
	{
		for(int x = 0; x < bitmap1.bmWidth; x++)
		{
			int B = pBits1[y * bitmap1.bmWidthBytes + x * bpp1 + 0]; //Blue
			int G = pBits1[y * bitmap1.bmWidthBytes + x * bpp1 + 1]; //Green
			int R = pBits1[y * bitmap1.bmWidthBytes + x * bpp1 + 2]; //Red

//			int A = R * 0.299 + G * 0.587 + B * 0.114; //一般RGB2Gray公式
			int A = R * 0.212671 + G * 0.715160 + B * 0.072169; //opencv的RGB2Gray公式 0.212671*R + 0.715160*G + 0.072169*B

			gray[y * width2 + x] = A;
		}
	}

	//-------------3. 计算灰度图像梯度幅值和方向-----------------------
	int* dx = new int[width2 * height2]; //x向偏导数
	int* dy = new int[width2 * height2]; //y向偏导数

	memset(dx, 0, sizeof(int) * width2 * height2);
	memset(dy, 0, sizeof(int) * width2 * height2);
	
	//利用Sobel算子,计算x,y方向的偏导数
	for(int y = 0; y < height2; y++)
	{
		for(int x = 0; x < width2; x++)
		{
			if(x < 1 || x >= width2 -1 || y < 1 || y >= height2 - 1){continue;} //3x3的算子,图像的4条边需要跳过
			
			int dx = -(gray[(y - 1) * width2 + (x - 1)] * 1 + gray[(y + 0) * width2 + (x - 1)] * 2 + gray[(y + 1) * width2 + (x - 1)] * 1)
				+ (gray[(y - 1) * width2 + (x + 1)] * 1 + gray[(y + 0) * width2 + (x + 1)] * 2 + gray[(y + 1) * width2 + (x + 1)] * 1);
			
			int dy = (gray[(y - 1) * width2 + (x - 1)] * 1 + gray[(y - 1) * width2 + (x + 0)] * 2 + gray[(y - 1) * width2 + (x + 1)] * 1)
				- (gray[(y + 1) * width2 + (x - 1)] * 1 + gray[(y + 1) * width2 + (x + 0)] * 2 + gray[(y + 1) * width2 + (x + 1)] * 1);

			int Grad = abs(dx) + abs(dy); //计算梯度幅值

			if(Grad >= high_thresh)
			{
				Grad = 255;
			}else
			{
				Grad = 0;
			}

			pBits2[y * bitmap2.bmWidthBytes + x * bpp2 + 0] = Grad;
			pBits2[y * bitmap2.bmWidthBytes + x * bpp2 + 1] = Grad;
			pBits2[y * bitmap2.bmWidthBytes + x * bpp2 + 2] = Grad;
		}
	}

	//计算梯度幅值和梯度的方向
	//.......

	return 1;
}

/*
 * test.cpp
 *
 * 过客 && 386520874@qq.com && 2016.03.26
 *
*/	

#include "CannyEdgeDetection.h"


int main(int argc, char* argv[]) //专门测试字体的边缘轮廓检测
{
	wchar_t in[260] = TEXT("./picture/test2.png");
	wchar_t out[260];

	CCannyEdgeDetection ced;

	BITMAP bitmap;
	HBITMAP hBitmap;
	BITMAP bitmap_dst;

	ced.OpenImage(in, bitmap, hBitmap);
	ced.Sobel(bitmap, bitmap_dst, 0, 400);
	ced.SaveImage(TEXT("./picture/test2.sobel.0_400.png"), bitmap_dst);
	ced.ReleaseBitmap(bitmap_dst);
	ced.Canny(bitmap, bitmap_dst, 10, 100);
	ced.SaveImage(TEXT("./picture/test2.canny.10_100.png"), bitmap_dst);
	ced.ReleaseBitmap(bitmap_dst);

	system("pause");

	return 1;
}


------------------------------------------------测试示例1----------------------------------------------------------

技术分享

                                                                                       图1.1 原始位图


技术分享

                                     图1.2canny检测[low,high]=[10,100]


技术分享

                                     图1.3 sobel检测[low,high]=[0,200]


技术分享

                                     图1.4 sobel检测[low,high]=[0,400]


------------------------------------------------测试示例2----------------------------------------------------------

                              技术分享

                                     图2.1 原始位图


                              技术分享

                                 图2.2 canny检测[low,high]=[100,400]

                              技术分享
                                 图2.3 sobel检测[low,high]=[0,400]


--------------------------结论-------------------------------------

通过上面两个示例图片的比较,可以发现sobel的处理比较干净利落,

而canny算法的处理结果细节比较多一点,即线条的毛边比较多。

但canny的好处是它的线宽只有1个像素,而sobel则不一定。两者各

有利弊,在图像特征检测方面很难说谁好谁坏,不过听说卷积神经网络

的特征检测用了sobel算子。


Canny边缘检测

标签:

原文地址:http://blog.csdn.net/jfu22/article/details/50985651

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!