码迷,mamicode.com
首页 > 其他好文 > 详细

证明一个递归数列极限的存在

时间:2014-07-27 21:52:49      阅读:272      评论:0      收藏:0      [点我收藏+]

标签:

If ${x_{n + 1}} = \cos {x_n}$, prove that $\mathop {\lim }\limits_{n \to \infty } {x_n}$ exists.

Note 1: As we want to prove that a limit of sequence exist, some methods can be used.

  1. $\left\{ {{x_n}} \right\}$ is bounded and monotonic, then $\left\{ {{x_n}} \right\}$converges.
  2. $\left\{ {{x_n}} \right\}$ converges if and only if $\left\{ {{x_{2n}}} \right\}$ and $\left\{ {{x_{2n+1}}} \right\}$ both converge to the same limit.
  3. In any metric space $X$, every convergent sequence is a Cauchy sequence. And every Cauchy sequence converges in a complete metric space.

Definiton of Cauchy sequence: A sequence ${x_n}$ in a metic space $X$ is said to be a Cauchy squence if \[\forall \varepsilon  > 0,\exists N > 0{\rm{ s}}{\rm{.t}}{\rm{. }}\forall n,m > N \Rightarrow \left| {{x_m} - {x_n}} \right| < \varepsilon. \]

It‘s obvious that in Cauchy sequence, $x_n$‘s are very closed to each other whereas $n$ is sufficiently large.

Since the sinusoid is bounded by 1, we only need to consider $\left| {{x_0}} \right| \le 1$. Otherwise, we will omit ${{x_0}}$ and it does nothing to the convergence of this sequence.

Proof 1: We are easy to check that whatever ${{x_0}}$ is, $\left\{ {{x_{2n}}} \right\}$ and $\left\{ {{x_{2n+1}}} \right\}$ both are monotonic with different monotonicity. Thus they both converges to some nonnegative numbers, say $a$ and $b$, respectively. However, from the iterative equation ${x_{2n}} = \cos \left( {\cos {x_{2n - 2}}} \right)$ we get that $a = \cos \left( {\cos a} \right)$. Similarly, $b = \cos \left( {\cos b} \right)$. If $a = b$, we complete the proof by method 2 in the Note 1 above.

Now let $f\left( x \right) = \cos \left( {\cos x} \right) - x$, $x \in \left[ { - 1,1} \right]$. Differentiating $f\left( x \right)$ we can easily conclude that $f\left( x \right)$ is monotone-decreasing. Since $f\left( { - 1} \right) > 0$, $f\left( { 1} \right) < 0$ and $f\left( x \right)$ is continuous on a closed interval, the equation $f\left( x \right) = 0$ has a unique solution. Thus $a = b$. Q.E.D.

Proof 2: Nowwe will use Cauchy criterion to prove this question. Let $m > n$, then \[\begin{array}{l}
\left| {{x_m} - {x_n}} \right| = \left| {\cos {x_{m - 1}} - \cos {x_{n - 1}}} \right|\\
 = 2\left| {\sin \frac{{{x_{m - 1}} + {x_{n - 1}}}}{2}\sin \frac{{{x_{m - 1}} - {x_{n - 1}}}}{2}} \right|\mathop  \le \limits^{{\rm{(a)}}} 2\left( {\sin 1} \right)\left| {\sin \frac{{{x_{m - 1}} - {x_{n - 1}}}}{2}} \right|\\
 \le \left( {\sin 1} \right)\left| {{x_{m - 1}} - {x_{n - 1}}} \right| \le {\left( {\sin 1} \right)^n}\left| {{x_{m - n}} - {x_0}} \right| \le {\left( {\sin 1} \right)^n}\left( {1 + \left| {{x_0}} \right|} \right).
\end{array}\]

Where inequality (a) follows form the fact that $\left| {{x_n}} \right| < 1,\forall n \Rightarrow \left| {\sin \frac{{{x_{m - 1}} + {x_{n - 1}}}}{2}} \right| < \sin 1$.

Since $\sin 1 < 1$ strictly, $\forall \varepsilon  > 0$, $\exists N > 0$ s.t. $\forall n > N \Rightarrow {\left( {\sin 1} \right)^n} < \frac{\varepsilon }{{1 + \left| {{x_0}} \right|}}$. Thus $\forall n,m > N \Rightarrow \left| {{x_m} - {x_n}} \right| < \varepsilon $. We have prove that $\left\{ {{x_n}} \right\}$ is a Cauchy sequence, it then convergs. Q.E.D.

Note 2: As in proof 2, we recognize that $f(x)= \cos {x}$ is a contraction since $\left| {\cos x - \cos y} \right| < \theta \left| {x - y} \right|$ where $\theta  = \sin 1 < 1$. The following contraction principle tells us that there exist one and only one $x$ such that $\cos x = x$.

Theorem (Contraction Principle): If $X$ is a complete metric space, and if $\varphi $ is a contraction of $X$ into $X$, then  there exist one and only one $x \in X$ such that $\varphi \left( x \right) = x$. (cf: Principles of Mathematical Analysis Rudin, Page220)

证明一个递归数列极限的存在

标签:

原文地址:http://www.cnblogs.com/aujun/p/3871244.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!