标签:style blog color 使用 os io for div
#define min(x,y) (((x) < (y)) ? (x) : (y)) #include <stdio.h> #include <stdlib.h> #include <cublas_v2.h> #include <iostream> #include <vector> //extern "C" //{ #include <cblas.h> //} using namespace std; int main() { const enum CBLAS_ORDER Order=CblasRowMajor; const enum CBLAS_TRANSPOSE TransA=CblasNoTrans; const enum CBLAS_TRANSPOSE TransB=CblasNoTrans; const int M=4;//A的行数,C的行数 const int N=2;//B的列数,C的列数 const int K=3;//A的列数,B的行数 const float alpha=1; const float beta=0; const int lda=K;//A的列 const int ldb=N;//B的列 const int ldc=N;//C的列 const float A[M*K]={1,2,3,4,5,6,7,8,9,8,7,6}; const float B[K*N]={5,4,3,2,1,0}; float C[M*N]; cblas_sgemm(Order, TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); for(int i=0;i<M;i++) { for(int j=0;j<N;j++) { cout<<C[i*N+j]<<"\n"; } cout<<endl; } return EXIT_SUCCESS; }
g++ testblas.c++ -lopenblas -o testout
g++ testblas.c++ -lopenblas_piledriverp-r0.2.9 -o testout 本地编译openblas版本
注意library放在引用library的函数的后面
cblas_sgemm Multiplies two matrices (single-precision). void cblas_sgemm ( const enum CBLAS_ORDER Order, // Specifies row-major (C) or column-major (Fortran) data ordering. //typedef enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102} CBLAS_ORDER; const enum CBLAS_TRANSPOSE TransA,//Specifies whether to transpose matrix A. const enum CBLAS_TRANSPOSE TransB, const int M, //Number of rows in matrices A and C. const int N,//Number of rows in matrices A and C. const int K, //Number of columns in matrix A; number of rows in matrix B const float alpha, //Scaling factor for the product of matrices A and B const float *A, const int lda, //The size of the first dimention of matrix A; if you are passing a matrix A[m][n], the value should be m. const float *B, const int ldb, //The size of the first dimention of matrix B; if you are passing a matrix B[m][n], the value should be m. const float beta, //Scaling factor for matrix C. float *C, const int ldc //The size of the first dimention of matrix C; if you are passing a matrix C[m][n], the value should be m. ); Thus, it calculates either C←αAB + βC or C←αBA + βC with optional use of transposed forms of A, B, or both.
typedef enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102} CBLAS_ORDER; typedef enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113, CblasConjNoTrans=114} CBLAS_TRANSPOSE;
$C=A*B$
$C^T=(A*B)^T=B^T*A^T$ 把A和B的顺序颠倒,可以直接得到转制矩阵乘法的结果,不用作其他变换,(结果C也是转制)。
cblas_sgemv
Multiplies a matrix by a vector (single precision).
void cblas_sgemv ( const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA, const int M, const int N, const float alpha, const float *A, const int lda, const float *X, const int incX, const float beta, float *Y, const int incY );
Y←αAX + βY
STL版本
cblas_daxpy
Computes a constant times a vector plus a vector (double-precision).
On return, the contents of vector Y are replaced with the result. The value computed is (alpha * X[i]) +
Y[i].
#include <OpenBlas/cblas.h> #include <OpenBlas/common.h> #include <iostream> #include <vector> int main() { blasint n = 10; blasint in_x =1; blasint in_y =1; std::vector<double> x(n); std::vector<double> y(n); double alpha = 10; std::fill(x.begin(),x.end(),1.0); std::fill(y.begin(),y.end(),2.0); cblas_daxpy( n, alpha, &x[0], in_x, &y[0], in_y); //Print y for(int j=0;j<n;j++) std::cout << y[j] << "\t"; std::cout << std::endl; }
标签:style blog color 使用 os io for div
原文地址:http://www.cnblogs.com/huashiyiqike/p/3871927.html