码迷,mamicode.com
首页 > 其他好文 > 详细

ST:(homework 3)Some problems about Graph Coverage

时间:2016-03-30 19:27:04      阅读:190      评论:0      收藏:0      [点我收藏+]

标签:

题目的源代码如下:

 1 package cn.tju.scs.printPrime;
 2 
 3 public class Prime {
 4     public static int MAXPRIMES = 30000;
 5     public static boolean isDivisible(int a,int b){
 6         int c = b%a;
 7         if (c == 0){
 8             return true;
 9         }
10         else {
11             return false;
12         }
13     }
14     public static void printPrimes(int n){
15         int curPrime;
16         int numPrimes;
17         boolean isPrime;
18         int[] primes = new int [MAXPRIMES];
19         
20         primes[0] = 2;
21         numPrimes = 1;
22         curPrime = 2;
23         while(numPrimes < n){
24             curPrime++;
25             isPrime = true;
26             for(int i = 0; i <= numPrimes - 1; i++){
27                 if(isDivisible(primes[i],curPrime)){
28                     isPrime = false;
29                     break;
30                 }
31             }
32             if(isPrime){
33                 primes[numPrimes] = curPrime;
34                 numPrimes++;
35             }
36         }
37         
38         for(int i = 0; i <= numPrimes -1; i++){
39             System.out.println("Primes: " + primes[i]);
40         }
41         
42     }
43     
44     
45 
46 }

 

问题:

1、以上源代码的控制流图如下:

技术分享

2、当把下面判断是不是素数的代码中的for的条件改成for(int i = 0; i <= 0 ; i++)是代码如下

for(int i = 0; i <= 0; i++){
  if(isDivisible(primes[i],curPrime)){
  isPrime = false;
  break;
  }
}

这样每次只判断是不是偶数,当t1 = (n = 3)时,算出的素数为2、3、5所得到的结果并没有发现错误;然而当t2 = (n = 5)时,所得的结果为2、3、5、7、9,我们能够看出所得的结果是错误的,所以能够检查出错误。所以测试用例有力相同的主路径,并不一定找出相同的错误。

3、当 n= 1时,是相应的测试路径访问连接While语句开始到for语句的边,而不通过while的循环体。

4、

节点覆盖:TR{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

边覆盖: TR{(1,2),(2,3),(3,5),(5,6),(6,7),(7,8),(7,9),(9,6),(6,10),(8,10),(10,11),(11,12),(12,13),(11,13),(13,2),(2,4),(4,14),(14,15),(15,14),(14,16)}

主路径覆盖:TR:

         [1,2,3,5,6,7,9]

         [1,2,3,5,6,7,8,10,11,12,13]

        [1,2,3,5,6,7,8,10,11,13]

         [1,2,3,5,6,10,11,12,13]

          [1,2,3,5,6,7,8,10,11,13]

           [2,3,5,6,7,8,10,11,12,13,2]

         [2,3,5,6,7,8,10,11,13,2]

         [2,3,5,6,10,11,12,13,2]

           [2,3,5,6,7,8,10,11,13,2]

           [1,2,4,14,15]

        [1,2,4,14,16]

        [6,7,9,6]

                          [14,15,14]

                         [3,5,6,7,8,10,11,12,13,2,4,14,15]

         [3,5,6,7,8,10,11,13,2,4,14,15]

           [3,5,6,10,11,13,2,4,14,15]

                         [3,5,6,10,11,12,13,2,4,14,15]

         [7,9,6,7,8,10,11,12,13,2,4,14,15]

         [7,9,6,7,8,10,11,13,2,4,14,15]

          [7,9,6,10,11,13,2,4,14,15]

                          [7,9,6,10,11,12,13,2,4,14,15]

          [3,5,6,7,8,10,11,12,13,2,4,14,16]

         [3,5,6,7,8,10,11,13,2,4,14,16]

          [3,5,6,10,11,13,2,4,14,16]

                       [3,5,6,10,11,12,13,2,4,14,16]

        [7,9,6,7,8,10,11,12,13,2,4,14,16]

         [7,9,6,7,8,10,11,13,2,4,14,16]

          [7,9,6,10,11,13,2,4,14,16]

                          [7,9,6,10,11,12,13,2,4,14,16]

                          [15,14,16]

                          [2,3,5,6,7,8,10,11,12,13,2]

                          [3,5,6,7,8,10,11,12,13,2,3]

          [5,6,7,8,10,11,12,13,2,3,5]

            [6,7,8,10,11,12,13,2,3,5,6]

                             [7,8,10,11,12,13,2,3,5,6,7]

                              [8,10,11,12,13,2,3,5,6,7,8]

                              [10,11,12,13,2,3,5,6,7,8,10]

                [11,12,13,2,3,5,6,7,8,10,11]

               [12,13,2,3,5,6,7,8,10,11,12]

               [13,2,3,5,6,7,8,10,11,12,13]

                          [2,3,5,6,7,8,10,11,13,2]

          [3,5,6,7,8,10,11,13,2,3]

                             [5,6,7,8,10,11,13,2,3,5]

           [6,7,8,10,11,13,2,3,5,6]

           [7,8,10,11,13,2,3,5,6,7]

           [8,10,11,13,2,3,5,6,7,8]

           [10,11,13,2,3,5,6,7,8,10]

           [11,13,2,3,5,6,7,8,10,11]

           [13,2,3,5,6,7,8,10,11,13]

            [2,3,5,6,10,11,12,13,2]

              [3,5,6,10,11,12,13,2,3]

          [5,6,10,11,12,13,2,3,5]

          [6,10,11,12,13,2,3,5,6]

          [10,11,12,13,2,3,5,6,10]

          [11,12,13,2,3,5,6,10,11]

          [12,13,2,3,5,6,10,11,12]

          [13,2,3,5,6,10,11,12,13]

           [2,3,5,6,7,8,10,11,13,2]

          [3,5,6,7,8,10,11,13,2,3]

          [5,6,7,8,10,11,13,2,3,5]

          [6,7,8,10,11,13,2,3,5,6]

          [7,8,10,11,13,2,3,5,6,7]

          [8,10,11,13,2,3,5,6,7,8]

          [10,11,13,2,3,5,6,7,8,10]

          [11,13,2,3,5,6,7,8,10,11]

          [13,2,3,5,6,7,8,10,11,13]

          [6,7,9,6]

          [7,9,6,7]

          [9,6,7,9]      

                            [14,15,14]

          [15,14,15]

5、测试方法的实现

技术分享
 1 package cn.tju.scs.printPrime;
 2 
 3 import static org.junit.Assert.*;
 4 
 5 import org.junit.Before;
 6 import org.junit.Test;
 7 
 8 public class PrimeTest {
 9      
10     @Before
11     public void setUp() throws Exception {
12     }
13 
14     @Test
15     public void test() {
16         Prime.printPrimes(3);
17         Prime.printPrimes(4);
18         Prime.printPrimes(1);
19         Prime p = new Prime();
20     }
21 
22 }
View Code

测试效果如下图所示:

技术分享

技术分享

ST:(homework 3)Some problems about Graph Coverage

标签:

原文地址:http://www.cnblogs.com/superjn/p/5338277.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!