# 软件工程 Homework3

``` 1 /*******************************************************
2      * Finds and prints n prime integers
3      * Jeff Offutt, Spring 2003
4      ******************************************************/
5     public static void printPrimes (int n)
6     {
7         int curPrime; // Value currently considered for primeness
8         int numPrimes; // Number of primes found so far.
9         boolean isPrime; // Is curPrime prime?
10         int [] primes = new int [MAXPRIMES]; // The list of prime numbers.
11
12         // Initialize 2 into the list of primes.
13         primes [0] = 2;
14         numPrimes = 1;
15         curPrime = 2;
16         while (numPrimes < n)
17         {
18             curPrime++; // next number to consider ...
19             isPrime = true;
20             for (int i = 0; i <= numPrimes-1; i++)
21             { // for each previous prime.
22                 if (isDivisible(primes[i], curPrime))
23                 { // Found a divisor, curPrime is not prime.
24                     isPrime = false;
25                     break; // out of loop through primes.
26                 }
27             }
28             if (isPrime)
29             { // save it!
30                 primes[numPrimes] = curPrime;
31                 numPrimes++;
32             }
33         } // End while
34
35         // Print all the primes out.
36         for (int i = 0; i <= numPrimes-1; i++)
37         {
38             System.out.println ("Prime: " + primes[i]);
39         }
40     } // end printPrimes```

a. 画出函数的控制流图

b. 设计一个t2=(n=5)能发现但t1=(n=3)不能发现的错误

c. 寻找一组不经过while循环的测试用例

n = 1

d. 找出点覆盖、边覆盖和主路径覆盖的所有TR（测试需求）

1. 节点覆盖：[1,2,3,5,6,9,5,6,8,10,11,2,4,12,13,14]

[1,2,3,5,10,2,4,12,14]

[1,2,3,5,10,11]

[1,2,3,5,6,9]

[5,6,9,5]

[2,3,5,6,8,10,2]

[2,3,5,6,8,10,11,2]

[2,3,5,10,2]

[2,3,5,10,11,2]

[1,2,4,12,13,14]

[1,2,4,12,14]

[3,5,6,8,10,11,2,4,12,13,14]

[3,5,6,8,10,2,4,12,13,14]

[3,5,10,11,2,4,12,13,14]

[3,5,10,2,4,12,13,14]

[3,5,6,8,10,11,2,4,12,14]

[3,5,6,8,10,2,4,12,14]

[3,5,10,11,2,4,12,14]

[3,5,10,2,4,12,14]

[9,5,6,8,10,11,2,4,12,13,14]

[9,5,6,8,10,2,4,12,13,14]

[9,5,6,8,10,11,2,4,12,14]

[9,5,6,8,10,2,4,12,14]

[0,1,2,3,5,6,8,10,11,2,4,12,13,14]

[0,1,2,3,5,6,8,10,11,2,4,12,14]

[0,1,2,3,5,6,8,10,2,4,12,13,14]

[0,1,2,3,5,6,8,10,2,4,12,14]

[0,1,2,3,5,6,9,5,6,8,10,11,2,4,12,13,14]

[0,1,2,3,5,6,9,5,6,8,10,2,4,12,13,14]

[0,1,2,3,5,6,9,5,6,8,10,11,2,4,12,14]

[0,1,2,3,5,6,9,5,6,8,10,2,4,12,14]

[0,1,2,3,5,10,11,2,4,12,13,14]

[0,1,2,3,5,10,2,4,12,13,14]

[0,1,2,3,5,10,11,2,4,12,14]

[0,1,2,3,5,10,2,4,12,14]

(0)
(0)