码迷,mamicode.com
首页 > 其他好文 > 详细

指定CRC32反构数据

时间:2016-04-01 18:49:13      阅读:264      评论:0      收藏:0      [点我收藏+]

标签:

指定CRC反构数据

【摘要】
针对CRC32算法,给定希望产生的CRC32校验和,通过修改给定文件中连续4个字节,将CRC32改变成希望产生的值。

1、 题目

  给出一组具体的题目,可以便于对问题的分析与解答,并用来验证算法的正确。
  已知如下数据:
00 01 02 03 04 05 06 07 08 09 ?? ?? ?? ?? 0A 0B 0C 0D 0E 0F
  向问号处填入4个字节的数字,使数据的CRC32校验和为DEADBEEF

2、 CRC32算法

  这里的CRC32校验和,以主流文件校验工具提供的CRC32为准,其模型为:
Bits=32,(校验和的位数)
TruncPoly=0x104C11DB7,(多项式系数序列)
InitRem=0xFFFFFFFF,(余数的初值)
FinalXor=0xFFFFFFFF,(最终结果需要异或的值)
ReflectIn=true,(数据输入时高低颠倒)
ReflectRem=true。(余数输出之前先高低颠倒)
  其中,TruncPoly最高位的1通常省略不写,也就是0x04C11DB7
  下面给出一个典型的计算函数。函数中,CRC32算法的核心部分,在于前半部分的移位,按情况与多项式的异或。至于后边将余数的高低位进行的颠倒,以及最终异或的常量,只是收尾。
  计算函数如下:

#include <assert.h>
#include <stdint.h>

uint32_t crc32_checksum( const uint8_t *buf, unsigned len )
{
    assert (buf != 0);

    // initial remainder
    uint32_t rem = 0xFFFFFFFF;
    for (unsigned i = 0; i < len; ++i)
    {
        // reflect input
        for (unsigned j = 31; j >= 24; --j)
        {
            if (((buf[i] << j) ^ rem) & 0x80000000)
            {
                // truncated polynominal
                rem = (rem << 1) ^ 0x04C11DB7;
            }
            else
            {
                rem = rem << 1;
            }
        }
    }

    // reflect remainder
    uint32_t ref = 0;
    for (unsigned i = 0; i < 32; ++i)
    {
        ref |= ((rem >> i) & 1) << (31 - i);
    }

    // final xor value
    return ref ^ 0xFFFFFFFF;
}

3、 定义运算符

  定义需要的运算符,可以便于书写、推导计算方法。
  仿照CRC32算法核心部分,定义二进制序列的“冗余”运算符:“\”,二进制序列X对多项式P(保留最高位的1,共计33位)的冗余:X\P,其定义为:
  直到X的高于32的位全部为0为止,找到X的不为0的最高位的位置n,将P左移(32-n)位得到Q,通过把X^Q赋值给X,使X的不为0的最高位成为0,不断重复该过程;最后保留X的最低32位,就是冗余的结果。上述操作只是为了得到运算结果,而不是修改X的值。
  定义了冗余运算符,就可以写出循环冗余的核心部分的递推公式:

Rn+1=((Rn<<1)^(In<<32))?P,n=0,1,2,3,...

  设Rn=Rn^(In<<31)Rn的最高位即第31位记做r31,也就是:
Rn+1={Rn<<1,(Rn<<1)^P,r31=0r31=1

  其中,<<是左移操作的运算符,^是异或操作的运算符,Rn是记录余数的寄存器(共计32位),R0是寄存器的初值,In是输入数据的第n 个位,P是除数多项式(共计33位)。
  由于我们习惯按照字节进行处理,所以再列出针对字节流In+7In+6?In 的递推公式:
Rn+8=((Rn<<8)^(InIn+1?In+7<<32))?P,n=0,1,2,3,?

  其中,输入数据的字节顺序进行了高低颠倒,原因在于参数ReflectIn为真。注意,参数ReflectIn的含义为,字节内的位是否颠倒输入。为假表示不需要颠倒,按照从高位到低位的顺序依次输入;为真表示需要颠倒,按照从低位到高位的顺序依次输入。另外,n的取值不仅仅是0、8、16、24……当n为1、2、3、……时,上述递推公式仍然是成立的,所以n的有效范围仍然写作0、1、2、3……

4、 逆运算和反运算

  循环冗余的递推公式是可逆的。在循环冗余递推公式中,P是固定的常量,已知RnIn,可以求得Rn+1。逆运算便是,已知Rn+1In,求得Rn。与逆运算相对,反运算便是,已知Rn+1Rn,求得In
  我们分析一下逆运算。对Rn+1的值有贡献的,包括(Rn<<1)的值、(In<<32)的值,以及可能出现进行异或操作的P。考虑到(Rn<<1)(In<<32)的最低位一定是0,所以Rn+1的最低位只能来自于P。要让逆运算存在,其充分必要条件是:P的最低位是1。我们选取的多项式满足这个条件,实际上这本来就是理所当然的条件。假如某种CRC标准的除数多项式,其最低位是0,那么算出的余数一定是偶数,余数的最低位就失去了意义。
  我们可以得到循环冗余逆运算的递推公式如下:

Rn={(Rn+1>>1)^(In<<31),(Rn+1>>1)^(In<<31)^(P>>1),(Rn+1&1)=0(Rn+1&1)=1

  其中,&运算符是“按位与”运算,(Rn+1&1)的含义就是取Rn+1的最低位,递推公式是依据这个最低位有不同公式的公式。
  根据上面的分析,已知Rn+1In,是可以求得Rn的。那么,已知Rn+1Rn,是否可以求得In呢?答案是不一定。In的取值只有0和1,RnIn配合,得到的值可能与Rn+1并不相等,因为Rn+1一共有232种取值,而当Rn一定时,In一共有2种取值,得到的结果也只有2种取值,不一定恰好落到Rn+1上。
  那么,增加In的位数,借此增加In取值的可能性,是不是就能够求得In呢?实际上,由于P是33位的,所以令In增加到32位,便可让In232种取值,用穷举就可以得到正确的值。但穷举法很耗时,而且时间复杂度是指数级别的。在这里我们尝试用数学方法计算。32位的递推公式如下:
Rn+32=((Rn<<32)^(InIn+1?In+31<<32))?P,n=0,1,2,3,?

  等式右边,Rn左移的位数,由最开始的左移1位,以及按照字节处理的左移8位,现在变成左移32位,这已经从量变提升为质变了。由于异或操作具有交换律,而等式右边的两个数都是左移32位,因此交换其顺序,就得到了如下的式子:
Rn+32=((InIn+1?In+31<<32)^(Rn<<32))?P,n=0,1,2,3,?

  我们把Rn+32对32位的Rn进行循环冗余逆运算,得到的结果就是InIn+1?In+31的值。由于我们习惯按照字节进行处理,所以将这个32位的值拆成4个字节,注意参数ReflectIn为真,因此4个字节的各个位的顺序是:
In+7In+6?In,In+15In+14?In+8,In+23In+22?In+16,In+31In+30?In+24
  我们把Rn也按照字节拆开。首先把Rn用32个位表示:
r0,r1,r2,,r31

  由于ReflectIn为真,因此Rn的值作为输入数据,需要由最低位开始输入:
Rn=r0r1r2?r31

  按照字节拆开之后,4个字节的各个位的顺序是:
r7r6?r0,r15r14?r8,r23r22?r16,r31r30?r24

  结论就是,Rn+32Rn的反运算,等效于Rn+32对上面4个字节的r的逆运算。

5、 题目分解

  我们把题目中,进行CRC运算的各个步骤列成表格:

00 01 02 03 04 05 06 07 08 09I7?0I15?8I23?16I31?240A 0B 0C 0D 0E 0F??rem=0xFFFFFFFFrem=U31U30?U0rem=V31V30?V0rem=W31W30?W0rem=W0W1?W31W0W1?W31^0xFFFFFFFF

  我们可以用开始部分的已知数求出U31U30?U0的值,把最终结果变换成W31W30?W0的值,用 W31W30?W0对结束部分的已知数求逆运算得到V31V30?V0的值,最后用V31V30?V0U31U30?U0求逆运算,就可以得到I7?0I15?8I23?16I31?24的值了。由于进行了两次逆运算,而第二次逆运算正好有4个字节,这4个字节恰好可以填在未知数的4个字节的位置,因此可以将U31U30?U0暂时填到未知数的部分,将两次逆运算合并成一次逆运算。
  由于参数ReflectIn为真,导致运算过程中,所有的运算数据都是高低颠倒的,所以,为了便于处理,这里将余数本身进行高低颠倒,数据输入的操作改为添至余数的低位,移位操作也改为右移,逆运算中的移位操作则改为左移,多项式也进行颠倒。?

6、 处理数组

void crc32_gen_array( uint32_t crc, int pos, uint8_t *buf, int len )
{
    assert (pos >= 0);
    assert (buf != 0);
    assert (pos + 4 <= len);

    uint32_t rem = 0xFFFFFFFF;
    for (int i = 0; i < pos; ++i)
    {
        rem ^= buf[i];

        for (int j = 0; j < 8; ++j)
        {
            rem = (rem >> 1) ^ (rem & 0x00000001 ? 0xEDB88320 : 0);
        }
    }

    for (int i = 0; i < 4; ++i)
    {
        buf[pos + i] = (rem >> (8 * i)) & 0xFF;
    }

    rem = ~crc;
    for (int i = len - 1; i >= pos; --i)
    {
        for (int j = 0; j < 8; ++j)
        {
            rem = (rem << 1) ^ (rem & 0x80000000 ? 0xDB710641 : 0);
        }

        rem ^= buf[i];
    }

    for (int i = 0; i < 4; ++i)
    {
        buf[pos + i] = (rem >> (8 * i)) & 0xFF;
    }

    return;
}

各个参数的含义为:
crc:指定要构造的校验和;
pos:指定数据在反构数组中的位置;
buf:指定等待反构的数组;
len:等待反构数组的长度。
用这个方法解答文章开头的题目,并验证结果。

#include <stdio.h>

void test1()
{
    uint8_t buf[20] =
    {
        0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,
        0, 0, 0, 0,
        0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
    };

    crc32_gen_array (0xDEADBEEF, 10, buf, 20);

    for (int i = 10; i < 14; i++)
    {
        printf ("%02X ", buf[i]);
    }

    printf ("%08X \n", crc32_checksum (buf, 20));

    return;
}

  在主函数中调用测试函数,运行结果如下:
76 EF 99 DE DEADBEEF
  成功算出来了填入的数字。

7、 驱动表法

  通常,CRC32的计算都是以字节为最小单位,而算法中,在循环内部存在着分支判断语句,这样的语句会严重影响运算效率,所以出现了将一个字节的8位进行整体处理的方法。该方法事先将一个字节的256种可能全部列举出来,然后用查表法对号入座,因此被称为“驱动表法”。
  算法中的冗余运算及其逆运算,都可以用驱动表法进行改造,这样,处理大量数据的时候可以显著提高效率。
驱动表法能够成立,在于异或操作的交换律。将8次移位、异或的组合操作,拆成8次移位、8次异或,结果是不变的。
  我们把上文中的计算CRC32的函数,以及反构数组的函数,全部用驱动表法进行改造。注意,计算CRC32的函数,在改造之前,首先用逆序进行了一次改造。改造后的函数如下:

static uint32_t s_gen_table[0x100] = { 0 };
static uint32_t s_inv_table[0x100] = { 0 };

void init_table()
{
    for (int i = 0; i < 0x100; ++i)
    {
        uint32_t gen = i;
        uint32_t inv = i << 24;

        for (int j = 0; j < 8; ++j)
        {
            gen = (gen >> 1) ^ (gen & 0x00000001 ? 0xEDB88320 : 0);
            inv = (inv << 1) ^ (inv & 0x80000000 ? 0xDB710641 : 0);
        }

        s_gen_table[i] = gen;
        s_inv_table[i] = inv;
    }

    return;
}

uint32_t crc32_by_table( const uint8_t *buf, unsigned len )
{
    assert (buf != 0);

    uint32_t rem = 0xFFFFFFFF;
    for (unsigned i = 0; i < len; ++i)
    {
        rem = (rem >> 8) ^ s_gen_table[(rem ^ buf[i]) & 0xFF];
    }

    return ~rem;
}
?
void crc32_gen_by_table( uint32_t crc, int pos, uint8_t *buf, int len )
{
    assert (pos >= 0);
    assert (buf != 0);
    assert (pos + 4 <= len);

    uint32_t rem = 0xFFFFFFFF;
    for (int i = 0; i < pos; ++i)
    {
        rem = (rem >> 8) ^ s_gen_table[(rem ^ buf[i]) & 0xFF];
    }

    for (int i = 0; i < 4; ++i)
    {
        buf[pos + i] = (rem >> (8 * i)) & 0xFF;
    }

    rem = ~crc;
    for (int i = len - 1; i >= pos; --i)
    {
        rem = (rem << 8) ^ s_inv_table[rem >> 24] ^ buf[i];
    }

    for (int i = 0; i < 4; ++i)
    {
        buf[pos + i] = (rem >> (8 * i)) & 0xFF;
    }

    return;
}

  其中,s_gen_table和s_inv_table是驱动表,调用init_table函数来初始化驱动表。我们可以在初始化之后,把驱动表打印出来,然后以常量静态数组的方式定义驱动表,省去初始化驱动表的函数。

8、 处理文件

  我们的最终目的,是反构文件,改造文件成我们需要的校验和。注意,文件的尺寸可能超过程序可以申请的最大内存的大小,所以要一部分一部分的读取文件。

void crc32_gen_file( uint32_t crc, int64_t pos, const char *filename )
{
    assert (pos >= 0);
    assert (filename != 0);
    assert (filename[0] != 0);

    FILE *stream = fopen (filename, "rb+");
    if (stream == 0)
    {
        return;
    }

    enum { BUF_SIZE = 0x40000 };
    uint8_t buf[BUF_SIZE] = { 0 };
    _fseeki64 (stream, pos, SEEK_SET);
    fwrite (buf, 1, 4, stream);

    uint32_t rem = 0xFFFFFFFF;
    for (int64_t i = 0; i < pos; ++i)
    {
        if (i % BUF_SIZE == 0)
        {
            _fseeki64 (stream, i, SEEK_SET);
            fread (buf, 1, BUF_SIZE, stream);
        }
        rem = (rem >> 8) ^ s_gen_table[(rem ^ buf[i % BUF_SIZE]) & 0xFF];
    }

    for (int i = 0; i < 4; ++i)
    {
        buf[i] = (rem >> (8 * i)) & 0xFF;
    }
    _fseeki64 (stream, pos, SEEK_SET);
    fwrite (buf, 1, 4, stream);
?
    rem = ~crc;
    _fseeki64 (stream, 0, SEEK_END);
    int64_t len = _ftelli64 (stream);
    for (int64_t i = len - 1; i >= pos; --i)
    {
        if (i == len - 1 || i % BUF_SIZE == BUF_SIZE - 1)
        {
            _fseeki64 (stream, i / BUF_SIZE * BUF_SIZE, SEEK_SET);
            fread (buf, 1, BUF_SIZE, stream);
        }

        rem = (rem << 8) ^ s_inv_table[rem >> 24] ^ buf[i % BUF_SIZE];
    }

    for (int i = 0; i < 4; ++i)
    {
        buf[i] = (rem >> (8 * i)) & 0xFF;
    }
    _fseeki64 (stream, pos, SEEK_SET);
    fwrite (buf, 1, 4, stream);
    fclose (stream);

    return;
}

  自己创建一个文件,然后用这个函数反构文件,然后用文件检验程序计算其CRC32,发现能够成功。


附注:头一次用markdown编辑公式,实在是好麻烦……

指定CRC32反构数据

标签:

原文地址:http://blog.csdn.net/sugar13/article/details/51029312

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!