标签:
题意:有向图中有n(1 <= n <= 200)个点,无自环或者环的大小至少为3.给定每条边的最小流量和最大流量,问每条边的可行流量为多少?
思路:一般求解的网络流并不考虑下界问题,即流量可以为0,在有下界时,我们只需将上界变成r-l,这时还需要满足流量守恒,增加源点s和汇点t,当点u的流入大于流出时,将点u与s连边,容量即为多出的流量。同理当u流出大于流入时,多出来的流出的流量连到汇点t;直接跑最大流;
注:这时判断是否存在可行解时,是看连到源点的所有边是否满流,全为满流说明内部流量平衡,存在可行解;之后离线对于id输出即可;
ps:对于网络流问题,无论题目的是有向还是无向图,因为是增广搜索,所以一定是建无向图。。
#include<bits/stdc++.h> using namespace std; #define rep0(i,l,r) for(int i = (l);i < (r);i++) #define rep1(i,l,r) for(int i = (l);i <= (r);i++) #define rep_0(i,r,l) for(int i = (r);i > (l);i--) #define rep_1(i,r,l) for(int i = (r);i >= (l);i--) #define MS0(a) memset(a,0,sizeof(a)) #define MS1(a) memset(a,-1,sizeof(a)) #define MSi(a) memset(a,0x3f,sizeof(a)) #define inf 0x3f3f3f3f #define lson l, m, rt << 1 #define rson m+1, r, rt << 1|1 #define lowbit(x) (x&(-x)) typedef pair<int,int> PII; #define A first #define B second #define MK make_pair typedef long long ll; typedef unsigned int uint; int i,j,k,n,m; const int M = 40000; int head[M],tot; struct Edge{ int from,to,cap,flow,Next,id; Edge(){} Edge(int f,int to,int cap,int Next,int id):from(f),to(to),cap(cap),Next(Next),id(id),flow(0){} }e[M<<1]; inline void ins(int u,int v,int w,int id) { e[++tot] = Edge{u,v,w,head[u],id}; head[u] = tot; } int s,t,cur[M],d[222]; int que[222]; bool BFS() { rep1(i,s,t) d[i] = -1; int l = 1,r = 1; que[r++] = s;d[s] = 0; while(l < r){ //[l,r) int u = que[l++]; for(int i = head[u];i;i = e[i].Next){ int v = e[i].to; if(d[v] < 0 && e[i].cap > e[i].flow){ // 只考虑残量网络的弧 d[v] = d[u] + 1;//扑出路径来; que[r++] = v; if(v == t) return true; } } } return false; } int DFS(int x,int a)// a表示目前为止所有弧的最小残量 { if(x == t || a == 0) return a; int& i = cur[x];//回溯时会多次DFS到同一个点 if(i == 0) i = head[x]; int flow = 0, f; for(;i;i = e[i].Next){// 从上次考虑的弧开始 int v = e[i].to; if(d[v] == d[x]+1 && (f = DFS(v,min(a,e[i].cap - e[i].flow))) > 0){ e[i].flow += f; e[i^1].flow -= f; flow += f; a -= f;// 残量-流量 if(a == 0) break; } } return flow; } int Dinic() { int flow = 0; while(BFS()){//仍然存在增广路时再DFS rep1(i,s,t) cur[i] = 0;//记录当前探索到的点的弧的编号 flow += DFS(s,inf); } return flow; } int l[M],ans[M]; int main() { //freopen("data.txt","r",stdin); //freopen("out.txt","w",stdout); int kase = 0; while(scanf("%d%d",&n,&m) == 2){ if(kase++) puts(""); MS0(head);tot = 1;MS0(d); int u,v,r; s = 0,t = n+1; rep1(i,1,m){ scanf("%d%d%d%d",&u,&v,&l[i],&r); d[u] -= l[i]; d[v] += l[i]; ins(u,v,r-l[i],i); ins(v,u,0,0); } rep1(i,1,n){ if(d[i] > 0) ins(s,i,d[i],0),ins(i,s,0,0); if(d[i] < 0) ins(i,t,-d[i],0),ins(t,i,0,0); } Dinic(); bool flag = false; for(int d = head[s];d;d = e[d].Next){ if(e[d].cap - e[d].flow){flag = true;break;} } if(flag){puts("NO");continue;} puts("YES"); rep1(i,2,tot)if(e[i].id){ ans[e[i].id] = e[i].flow+l[e[i].id]; } rep1(i,1,m) printf("%d\n",ans[i]); } return 0; }
SGU 194 Reactor Cooling Dinic求解 无源无汇有上下界的最大流
标签:
原文地址:http://www.cnblogs.com/hxer/p/5347353.html