标签:
计算几何真的好暴力啊。
#include<cmath> #include<cstdio> #include<cstring> #include<algorithm> #define max(a,b) (a) > (b) ? (a) : (b) #define N 1003 using namespace std; const double Pi = acos(-1); inline int dcmp(double x) {return (fabs(x) < 1e-6) ? 0 : (x < 0 ? -1 : 1);} inline double sqr(double x) {return x * x;} struct Point { double x, y; Point(double _x = 0, double _y = 0) : x(_x), y(_y) {} }; struct Rround { Point O; double R; Rround(Point _O = Point(0, 0), double _R = 0) : O(_O), R(_R) {} }; Point operator - (Point a, Point b) {return Point(a.x - b.x, a.y - b.y);} inline double dis(Rround a, Rround b) {return sqrt(sqr(a.O.x - b.O.x) + sqr(a.O.y - b.O.y));} inline bool cover(Rround to, Rround now) {return to.R >= now.R + dis(to, now);} struct Splay { double l, r; Splay(double _l = 0, double _r = 0) : l(_l), r(_r) {} }; Splay s[N]; int n, top; double ans = 0, tt, nxt; Rround r[N]; bool pd; inline void ins(Rround a, Rround b) { double d = dis(a, b), t, st, l; t = (sqr(a.R) - sqr(b.R) + sqr(d)) / (d + d); st = atan2((a.O.y - b.O.y), (a.O.x - b.O.x)); //st = atan2((a.O.x - b.O.x), (a.O.y - b.O.y)); l = acos(t / a.R); s[++top] = Splay(st - l, st + l); } inline bool cmp(Splay a, Splay b) {return a.l < b.l;} int main() { scanf("%d", &n); for(int i = 1; i <= n; ++i) scanf("%lf%lf%lf", &r[i].R, &r[i].O.x, &r[i].O.y); for(int i = 1; i <= n; ++i) { pd = 0; for(int j = i + 1; j <= n; ++j) if (cover(r[j], r[i])) { pd = 1; break; } if (pd) continue; top = 0; for(int j = i + 1; j <= n; ++j) if (!cover(r[i], r[j]) && r[i].R + r[j].R >= dis(r[i], r[j])) ins(r[i], r[j]); for(int j = 1; j <= top; ++j) { if (s[j].l < 0) s[j].l += 2 * Pi; if (s[j].r < 0) s[j].r += 2 * Pi; if (s[j].l > s[j].r) { s[++top] = Splay(0, s[j].r); s[j].r = 2 * Pi; } } sort(s + 1, s + top + 1, cmp); tt = 0; nxt = 0; for(int j = 1; j <= top; ++j) if (s[j].l > nxt) { tt += s[j].l - nxt; nxt = s[j].r; } else nxt = max(nxt, s[j].r); tt += 2 * Pi - nxt; ans += tt * r[i].R; } printf("%.3lf\n",ans); return 0; }
可惜一开始$π$设为$int$了查了$2h$的错QAQ
【BZOJ 1043】【HNOI 2008】下落的圆盘 判断圆相交+线段覆盖
标签:
原文地址:http://www.cnblogs.com/abclzr/p/5347738.html