码迷,mamicode.com
首页 > 其他好文 > 详细

[CodeVs3196]黄金宝藏(状态压缩DP/极大极小搜索)

时间:2016-04-03 00:16:19      阅读:164      评论:0      收藏:0      [点我收藏+]

标签:

      题目大意:给出n(≤500)个数,两个人轮流取数,每次可以从数列左边或者右边取一个数,直到所有的数被取完,两个人都以最优策略取数,求最后两人所得分数。

      显然这种类型的博弈题,第一眼就是极大极小搜索+记忆化,但是我并不是很会极大极小搜索TAT。然后第二眼发现可以用状压写,而且显然比极大极小搜索好写啊。预处理出前缀和,然后f[i,j]表示从第i个数到第j个数先手可得到的最大得分,则有f[i,j]=sum[j]-sum[i-1]-min(f[i+1,j],f[i,j-1]);【第i个数到第j个数的和减去min(第i+1个数到第j个数先手可得到的最大得分,第i个数到第j-1个数先手可得到的最大得分)】

      要注意一点,由于f[i,j]需要用到f[i+1,j]和f[i,j-1],所以我们需要枚举的是i到j这个区间的长度,先把区间长度小的计算出来,才能计算区间长度大的,一开始就被这个坑了,果然我还是太弱了= =。。。

代码如下:

技术分享
var
  n,i,j,x:longint;
  f:array[0..500,0..500]of longint;
  sum:array[0..500]of longint;

function min(a,b:longint):longint;
begin
  if a<b then exit(a);
  exit(b);
end;

begin
  readln(n);
  for i:=1 to n do
  begin
    read(x);
    sum[i]:=sum[i-1]+x;//前缀和
    f[i,i]:=x;
  end;
  for j:=1 to n-1 do//枚举区间长度
  for i:=1 to n-j do//枚举起点
  f[i,i+j]:=sum[i+j]-sum[i-1]-min(f[i+1,i+j],f[i,i+j-1]);
  writeln(f[1,n], ,sum[n]-f[1,n]);//后手为sum[n]-f[1,n]
end.
View Code

      当然,我不会极大极小搜索是因为我是蒟蒻啊。。。这道题HR神犇用的就是极大极小搜索,真是太神了%%%。

      dfs(l,r)表示已在左边取了l个数,已在右边取了r个数,在剩下的数里取,最多比对手多多少分,则有dfs(l,r):=max(a[l+1]-dfs(l+1,r),a[n-r]-dfs(l,r+1));由于双方都用最优策略,所以最多比对手多多少分=max(取左边的数-对手接下来最多比你多多少分,取右边的数-对手接下来最多比你多多少分);则先手分数为(总分+先手最多比后手多多少分)div 2,而后手得分则为(总分-先手最多比后手多多少分)div 2。

代码如下:

技术分享
var n,i,j,res,sum:longint;
    a:array[0..1000] of longint;
    f:array[0..600,0..600] of longint;
function max(a.b:longint):longint;
begin
  if a>b then exit(a);
  exit(b);
end;
function dfs(l,r:longint):longint;
begin
  if f[l,r]<>maxlongint then exit(f[l,r]);
  if l+r=n then begin
    f[l,r]:=0;
    exit(0);
  end;
  f[l,r]:=max(a[l+1]-dfs(l+1,r),a[n-r]-dfs(l,r+1));
  exit(f[l,r]);
end;
begin
  readln(n);
  sum:=0;
  for i:=1 to n do begin
    read(a[i]);
    inc(sum,a[i]);
  end;
  for i:=0 to n do
  for j:=0 to n-i do
  f[i,j]:=maxlongint;
  res:=dfs(0,0);
  writeln((sum+f[0,0]) div 2, ,(sum-f[0,0]) div 2);
end.
View Code

 

[CodeVs3196]黄金宝藏(状态压缩DP/极大极小搜索)

标签:

原文地址:http://www.cnblogs.com/Sakits/p/5348629.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!