码迷,mamicode.com
首页 > 其他好文 > 详细

Longest Continuance Increasing sub-sequence in matrix

时间:2016-04-03 07:20:25      阅读:120      评论:0      收藏:0      [点我收藏+]

标签:

一个矩阵,求最长连续的序列长度

[1 2 3
   4 5 6
   7 8 9]
我的解法时用dfs遍历矩阵,如果便利过的元素就标记为false,不再遍历。
邻居 就是上下左右
e.g.
1 2 3
6 5 4 -> 7
7 9 8
===================
5 7 9
1 2 3 -> 3
4 6 8
===================
9 8 7
4 5 6 ->9
3 2 1
题目一. 只能上下左右,走到边界处止步
题目二. 每一行/列都是一个循环,走到边界处譬如第 0 列,可以继续走到另一边界,譬如 n-1
 
 1 /*
 2  * Graph DFS
 3  * 
 4  * Find the Longest Continuance Increasing sub-sequence in 2d matrix
 5  * You could go up, down, left, right in the matrix
 6  * 
 7  */
 8 
 9 public class LIS2d {
10     public int findLongest(int[][] matrix) {
11         int max = 0;
12         int m = matrix.length, n = matrix[0].length;
13         boolean[][] visit = new boolean[m][n];
14         for (int i = 0; i < m; i++) {
15             for (int j = 0; j < n; j++) {
16                 int len = helper(matrix, visit, i, j, 1);
17                 max = max > len ? max : len;
18             }
19         }
20         return max;
21     }
22     public int helper(int[][] matrix, boolean[][] visit, int i, int j, int step) {
23         visit[i][j] = true;
24         int max = step;
25         int m = matrix.length, n = matrix[0].length;
26 //        if (i > 0 && matrix[i-1][j] == matrix[i][j]+1 && !visit[i-1][j]) {
27 //            int len = helper(matrix, visit, i-1, j, step+1);
28 //            max = max > len ? max : len;
29 //        }
30 //        if (i < m-1 && matrix[i+1][j] == matrix[i][j]+1 && !visit[i+1][j]) {
31 //            int len = helper(matrix, visit, i+1, j, step+1);
32 //            max = max > len ? max : len;
33 //        }
34 //        if (j > 0 && matrix[i][j-1] == matrix[i][j]+1 && !visit[i][j-1]) {
35 //            int len = helper(matrix, visit, i, j-1, step+1);
36 //            max = max > len ? max : len;
37 //        }
38 //        if (j < n-1 && matrix[i][j+1] == matrix[i][j]+1 && !visit[i][j+1]) {
39 //            int len = helper(matrix, visit, i, j+1, step+1);
40 //            max = max > len ? max : len;
41 //        }
42         int r = (i-1+m) % m;
43         int c = j;
44         if (matrix[r][c] == matrix[i][j]+1 && !visit[r][c]) {
45             int len = helper(matrix, visit, r, c, step+1);
46             max = max > len ? max : len;
47         }
48         r = (i+1+m) % m;
49         c = j;
50         if (matrix[r][c] == matrix[i][j]+1 && !visit[r][c]) {
51             int len = helper(matrix, visit, r, c, step+1);
52             max = max > len ? max : len;
53         }
54         r = i;
55         c = (j-1+n) % n;
56         if (matrix[r][c] == matrix[i][j]+1 && !visit[r][c]) {
57             int len = helper(matrix, visit, r, c, step+1);
58             max = max > len ? max : len;
59         }
60         r = i;
61         c = (j+1+n) % n;
62         if (matrix[r][c] == matrix[i][j]+1 && !visit[r][c]) {
63             int len = helper(matrix, visit, r, c, step+1);
64             max = max > len ? max : len;
65         }
66         visit[i][j] = false;
67         return max;
68     }
69     public static void main(String[] args) {
70         int[][] matrix = {{5, 6, 7},
71                           {4, 10, 9},
72                           {3, 2, 8}};
73         LIS2d lis = new LIS2d();
74         System.out.println(lis.findLongest(matrix));
75     }
76 }

 

Longest Continuance Increasing sub-sequence in matrix

标签:

原文地址:http://www.cnblogs.com/joycelee/p/5348982.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!