标签:
一个矩阵,求最长连续的序列长度
1 /* 2 * Graph DFS 3 * 4 * Find the Longest Continuance Increasing sub-sequence in 2d matrix 5 * You could go up, down, left, right in the matrix 6 * 7 */ 8 9 public class LIS2d { 10 public int findLongest(int[][] matrix) { 11 int max = 0; 12 int m = matrix.length, n = matrix[0].length; 13 boolean[][] visit = new boolean[m][n]; 14 for (int i = 0; i < m; i++) { 15 for (int j = 0; j < n; j++) { 16 int len = helper(matrix, visit, i, j, 1); 17 max = max > len ? max : len; 18 } 19 } 20 return max; 21 } 22 public int helper(int[][] matrix, boolean[][] visit, int i, int j, int step) { 23 visit[i][j] = true; 24 int max = step; 25 int m = matrix.length, n = matrix[0].length; 26 // if (i > 0 && matrix[i-1][j] == matrix[i][j]+1 && !visit[i-1][j]) { 27 // int len = helper(matrix, visit, i-1, j, step+1); 28 // max = max > len ? max : len; 29 // } 30 // if (i < m-1 && matrix[i+1][j] == matrix[i][j]+1 && !visit[i+1][j]) { 31 // int len = helper(matrix, visit, i+1, j, step+1); 32 // max = max > len ? max : len; 33 // } 34 // if (j > 0 && matrix[i][j-1] == matrix[i][j]+1 && !visit[i][j-1]) { 35 // int len = helper(matrix, visit, i, j-1, step+1); 36 // max = max > len ? max : len; 37 // } 38 // if (j < n-1 && matrix[i][j+1] == matrix[i][j]+1 && !visit[i][j+1]) { 39 // int len = helper(matrix, visit, i, j+1, step+1); 40 // max = max > len ? max : len; 41 // } 42 int r = (i-1+m) % m; 43 int c = j; 44 if (matrix[r][c] == matrix[i][j]+1 && !visit[r][c]) { 45 int len = helper(matrix, visit, r, c, step+1); 46 max = max > len ? max : len; 47 } 48 r = (i+1+m) % m; 49 c = j; 50 if (matrix[r][c] == matrix[i][j]+1 && !visit[r][c]) { 51 int len = helper(matrix, visit, r, c, step+1); 52 max = max > len ? max : len; 53 } 54 r = i; 55 c = (j-1+n) % n; 56 if (matrix[r][c] == matrix[i][j]+1 && !visit[r][c]) { 57 int len = helper(matrix, visit, r, c, step+1); 58 max = max > len ? max : len; 59 } 60 r = i; 61 c = (j+1+n) % n; 62 if (matrix[r][c] == matrix[i][j]+1 && !visit[r][c]) { 63 int len = helper(matrix, visit, r, c, step+1); 64 max = max > len ? max : len; 65 } 66 visit[i][j] = false; 67 return max; 68 } 69 public static void main(String[] args) { 70 int[][] matrix = {{5, 6, 7}, 71 {4, 10, 9}, 72 {3, 2, 8}}; 73 LIS2d lis = new LIS2d(); 74 System.out.println(lis.findLongest(matrix)); 75 } 76 }
Longest Continuance Increasing sub-sequence in matrix
标签:
原文地址:http://www.cnblogs.com/joycelee/p/5348982.html