标签:
课程地址:https://class.coursera.org/ntumltwo-002/lecture
重要!重要!重要~
一、随机森林(RF)
1.RF介绍
2.RF算法结构和优势
二、OOB(Out-Of-Bag)和自验证(Automatic Validation)
1.RF中使用的有放回的抽样方式(Bootstrapping)会导致能有些样本在某次训练中没有被使用,没有被用到的样本称为OOB(Out-Of-Bag)。
当样本集合很大的时候,如果训练数据的大小和样本集合的大小相同,那么某个样本没有被使用的概率大约为1/3,OOB的大小也约为样本集合的1/3,下面是具体的数学描述。
2.RF Validation
RF 并不注重每棵树的分类效果,实际中也不会用OOB数据来验证g(t),而是使用OOB数据来验证G。
但同时为了保证验证数据绝对没有在训练时“偷窥”,使用的G是去掉与测试的OOB相关的g(t)组成的G-。
最后将所有的OOB测试结果取平均。林说:实际中Eoob通常都会非常精确。
三、特征选择(Feature Selection)和排列检验(Permutation Test)
四、RF的应用
标签:
原文地址:http://www.cnblogs.com/wxquare/p/5354498.html