标签:数据结构--二叉树(1)
二叉树
构建:二叉树的构建采用的是先序遍历,->先储存根节点然后左右节点,用递归的思想将所有数据放在树中。
代码实现:实现了4种访问方法,先序,中序,后序,和层序的访问方法都采用递归的方式。
#include<iostream> #include<queue> #include<stack> using namespace std; template<class T> struct rootnode { T _value; rootnode<T> *_leftnode; rootnode<T> *_rightnode; rootnode<T>(T value) : _value(value), _leftnode(NULL), _rightnode(NULL) {} }; template <class T> class BinaryTree { public: BinaryTree<T>( T *str) { T *tmp = str; _root = _BinaryTree(tmp); } ~BinaryTree() { _Clear(_root); } BinaryTree<T> (BinaryTree &t) { _root=_Copy(t._root); } BinaryTree<T>& operator=(BinaryTree t) { if (*this != t) { swap(_root, t._root); } } void Fastorder() { _Fastorder(_root); } void Inorder() { _Inorder(_root); } void Postorder() { _Postorder(_root); } void Levelorder() { queue<rootnode<T>*> q; if (_root == NULL) { return; } q.push(_root); while (!q.empty()) { rootnode<T>* root = q.front(); cout << root->_value; q.pop(); if (root->_leftnode != NULL) { q.push(root->_leftnode); } if (root->_rightnode != NULL) { q.push(root->_rightnode); } } } int leafnum() { int num = 0; num=_Leafnum(_root,num); return num; } int Size() { int size = 0; _Size(_root,size); return size; } int Depth() { int Depth = _Depth(_root); return Depth; } void NRfastorder() { stack<rootnode<T>*> s; if (_root != NULL) { s.push(_root); } while (!s.empty()) { rootnode<T>* front=s.top(); cout<<front->_value; s.pop(); if (front->_rightnode != NULL) { s.push(front->_rightnode); } if (front->_leftnode != NULL) { s.push(front->_leftnode); } } } void NRinorder() { stack<rootnode<T>*>s; rootnode<T>*cur = _root; rootnode<T>* top = NULL; while (cur||!s.empty()) { while (cur) { s.push(cur); cur = cur->_leftnode; } if (top != s.top()->_rightnode) { top = s.top(); cout << top->_value; s.pop(); cur = top->_rightnode; } else { top = s.top(); cout << top->_value; s.pop(); } } } void NRpostorder() { rootnode<T>*cur = _root; stack<rootnode<T>*> s; rootnode<T>*top = NULL; while (cur || !s.empty()) { while (cur) { s.push(cur); cur = cur->_leftnode; } if (s.top()->_rightnode != NULL&&top != s.top()->_rightnode) { top = s.top(); cur = top->_rightnode; } else { top = s.top(); s.pop(); cout << top->_value; } } } protected: rootnode<T>* _BinaryTree(T *&str) { rootnode<T> *root = NULL; if (*str != ‘#‘&&*str != ‘\0‘) { root = new rootnode<T>(*str); str++; root->_leftnode = _BinaryTree(str); str++; root->_rightnode = _BinaryTree(str); } return root; } void _Fastorder(rootnode<T> *&root) { if (root == NULL) { return; } else { cout << root->_value; _Fastorder(root->_leftnode); _Fastorder(root->_rightnode); } } void _Inorder(rootnode<T> *root) { if (root == NULL) { return; } _Inorder(root->_leftnode); cout << root->_value; _Inorder(root->_rightnode); } void _Postorder(rootnode<T> *root) { if (root == NULL) { return; } _Postorder(root->_leftnode); _Postorder(root->_rightnode); cout << root->_value; } void _Clear(rootnode<T> *root) { if (root == NULL) { return; } rootnode<T> *tmp = root->_leftnode; rootnode<T> *tmp2 = root->_rightnode; delete root; _Clear(tmp); _Clear(tmp2); } rootnode<T>* _Copy(rootnode<T> *root) { rootnode<T> *newroot = NULL; if (root == NULL) { return newroot; } newroot = new rootnode<T>(root->_value); newroot->_leftnode = _Copy(root->_leftnode); newroot->_rightnode = _Copy(root->_rightnode); return newroot; } int _Size(rootnode<T> *root,int &size) { if (root == NULL) { return 0; } size++; _Size(root->_leftnode,size); _Size(root->_rightnode,size); return size; } int _Depth(rootnode<T> *root) { if (root==NULL) { return 0; } int hight = 1; int left = 0; int right = 0; left += _Depth(root->_leftnode) + hight; right += _Depth(root->_rightnode) + hight; if (left > right) { return left; } else { return right; } } int _Leafnum(rootnode<T>* root,int &num) { if (root == NULL) { return 0; } if (root->_leftnode == NULL&&root->_rightnode == NULL) { num++; } _Leafnum(root->_leftnode, num); _Leafnum(root->_rightnode, num); return num; } private: rootnode<T> *_root; }; void Test1() { char *str = "123##45##6##78###"; BinaryTree<char> b1(str); BinaryTree<char> b2(b1); BinaryTree<char> b3 = b2; b1.Fastorder(); cout << endl; b1.Inorder(); cout << endl; b1.Postorder(); cout << endl; b2.Fastorder(); cout << endl; b3.Fastorder(); cout << endl; cout << b3.Size()<<endl; cout << b3.Depth() << endl; b3.Levelorder(); cout << endl; cout << b3.leafnum()<<endl; } int main() { Test1(); }
本文出自 “痕迹” 博客,请务必保留此出处http://wpfbcr.blog.51cto.com/10696766/1760648
标签:数据结构--二叉树(1)
原文地址:http://wpfbcr.blog.51cto.com/10696766/1760648