题意就是:做整数拆分,答案是2^(n-1)
由费马小定理可得:2^n % p = 2^[ n % (p-1) ] % p
当n为超大数时,对其每个数位的数分开来加权计算
当n为整型类型时,用快速幂的方法求解
#include<iostream> #include<cstdio> #include<cstring> #include<string> #include<algorithm> using namespace std; const int Mod = 1e9+7; char str[100050]; __int64 Pow(__int64 n) { __int64 ans = 1, tem = 2; while(n){ if(n%2 == 1) ans = ans * tem % Mod; n = n / 2; tem = tem * tem % Mod; } return ans; } int main() { __int64 n; while(~scanf("%s", &str)) { int len = strlen(str); n = 0; for(int i = 0; i < len; i ++) { n = (n*10 + (str[i]-'0')) % (Mod-1); } n -= 1; __int64 ans = Pow(n); printf("%I64d\n", ans); } return 0; }
hdu 4704 费马小定理+快速幂,布布扣,bubuko.com
原文地址:http://blog.csdn.net/u011504498/article/details/38226733